
Tutorial: Implementing Unmasked AES with High

Level Synthesis using Xilinx Vitis HLS

Phuc Mai and Boyang Wang

Department of ECE, University of Cincinnati

November, 2024

1 Introduction

What This Document is About? Given a software implementation of AES (Advanced

Encryption Standard) written in C/C++ as the starting point, this document presents the

workflow of establishing a hardware implementation of AES at the RTL (Register Transfer

Level) level by using HLS (High Level Synthesis). This document specifically focuses on the

case of using Xilinx Vitis HLS, which is a leading industry HLS tool. We first describe the

process of generating the hardware implementation of AES with HLS given TinyAES [6], an

unmasked AES software implementation written in C/C++. We simulate/verify the hard-

ware implementation of unmasked AES at the RTL level and demonstrate the correctness

and efficiency its bitstream file on a Digilent Arty A7-100T Artix-7 FPGA. In addition, we

also extend the description of our pipeline to generate a hardware implementation of masked

AES given an masked AES [3] software implementation written in C/C++. The detailed

description of generating masked AES with HLS is presented in another document.

Why Is This Document Useful/Important? Applying HLS to a C program and

verifying/running the obtained hardware implementation on a real device (e.g., a FPGA) is

not trivial, especially given a complicated software implementation, such as AES. Multiple

lines in the original software implementation need to be customized and modified, which

requires reasonable amount of engineering time and deep understanding on both AES en-

cryption and HLS process. The research and education community currently lacks existing

documents describing the details of this comprehensive process. This document aims to fill

this gap and help new students to strengthen their knowledge and skills on this topic.

Note 1. Due to the complexity of HLS process, there are different ways to modify

the code to make the entire process successful. We present one way that works for us. We

acknowledge that this may not be the best way.

Note 2. We generate the hardware implementations of AES at the RTL level mainly

for pre-silicon side-channel analysis over simulated traces for our research projects. However,

2

the description of this document is general and can be used for educating/researching HLS

on AES without considering side-channel analysis.

Pre-Requisite. To follow the content of this document, the readers are expected to

have some basic understanding and background on AES and HLS. AES is the most popular

symmetric-key encryption we use in almost every single application on every device in the real

world. It is considered mathematically secure, even under attacks with quantum algorithms.

Some useful references related to AES and HLS can be found at [6] and [5] respectively.

2 Background on High Level Synthesis

High Level Synthesis (HLS) is the process of synthesizing high level programming lan-

guage code, e.g., C/C++ and SystemC, into Hardware Description Language (HDL), e.g.,

Verilog and VHDL, at the RTL level. It can ease the difficulty and complexity of writing

HDL code directly and save design time. The role of HLS is similar as a compiler. Instead

of compiling C code into assembly code or binaries in a compiler, HLS takes a C code as

input and transforms the code into code at the RTL level through multiple intermediate

code representations. In depth information about HLS can be found here [5].

Fig. 1: High-Level Overview of High Level Synthesis (Input: High-level code; Output: RTL-
Level code)

The high-level workflow of HLS is presented in Fig. 1. Specifically, given a software

implementation (e.g. in C code) as input, HLS first performs lexical analysis and parsing

to standardize input code into Intermediate Representation (IR). Independent from any

programming language, IR can exist in form of abstract syntax tree, sequencing graph,

control flow graph, or data flow graph. Next, HLS performs optimization on IR. Finally,

HLS runs scheduling and binding to generate RTL-level code written in Hardware Description

Language.

There are multiple commercial and open-source tools that can perform HLS. Commercial

tool, such as Stratus HLS [2], Catapult [8], Vivado HLS [1], are considered to be robust and

3

efficient. These tools can support a wide range of high level code in terms of synthesizing. On

the other hand, there is often a cost for license fee. Open-source tools, such as Bambu [4] and

GAUT [7], are free to used. However, they may not be able to achieve the same efficiency

and versatile level as the ones rendered by well-known commercial tools.

In this document, we investigate commercial HLS tools, specifically Xilinx Vitis HLS,

in terms of designing AES hardware implementation using HLS. In addition, we use Xilinx

Vivado to perform the verification of the obtained AES hardware implementation at the

RTL level as well as on FPGAs.

3 Software and Hardware Settings

We use the following hardware and software in this tutorial.

– Hardware: A desktop with an Intel i5 CPU, 64 GB memory, and an Intel HD Graphics

630 GPU running Linux (Ubuntu 22.04); an Digilient Arty A7-100t Artix-7 FPGA board

– Software (all free or open-source): Xilinx Vivado 2023.2 ML Edition, Xilinx Vitis (version

2023.2), Xilinx Vitis HLS (version 2023.2), Python 3.10.12

4 Introduction to Vitis HLS

AMD/Xilinx Vitis is an Integrated Design Environment (IDE). Vitist HLS is one of the

tools provided by Vitis. Vitis HLS, previously known as Vivado HLS, is highly integrated

with Vivado. Vitis HLS takes C/C++ files as input and outputs Verilog or VHDL files and

their IP for FPGA fabric.

4.1 Installation

The installation of Vitis is relatively straightforward. As Vitis is a commercial platform,

one may need to register for an account, though no charge will be enforced during installation

and day-to-day usage. Once registered, one can navigate to the following link to download

the software 1. In this document, we use Vitis version 2023.2. One may choose any supported

version, however, it is suggested to choose among the latest versions for better support. When

we install Vitis, Vivado and Vitis HLS will also be installed by default. The entire installation

takes typically about 1∼2 hours to complete.

Default Installation Process. The default installation process is to download an AMD

Unified Installer - Self Extracting Web Installer (as shown in Fig. 2) from the link above

1 https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vitis.html

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vitis.html

4

based on one’s operating system (e.g., Linux), proceed to run the bin file, and follow its

instructions to complete the installation. As a note, it is recommended to keep all options

as default and ensure that the machine has at least 300 GB of remaining storage (for Vitis,

Vitis HLS, Vivado and any other default packages).

During the installation process, the operating systems may miss some libraries needed

for installing Vitis, which may not be raised until the last step of installation. If that is the

case, one can install the missing libraries and then rerun the bin file until the installation of

Vitis is successful.

Fig. 2: AMD Unified Installer Web Self Extracting

While the installation process is running, one can take a look at the terminal to watch

out for any error along the way. If there’s any file installation error as shown in 3, one can

navigate to the link detailed with the error to install the required file manually. Once the

file is installed, one should move it to /tools/Xilinx/Downloads; sudo privilege is required

for this operation

Fig. 3: AMD/Xilinx Vitis installation log

5

Alternative Installation Process. Adding the missing libraries and re-running the bin

file could be time-consuming if the operating system misses a large number of libraries. An

alternative installation process is to download the AMD Unified Installer SFD file (as shown

in Fig. 4) of the same version, unzip it, and proceed to execute installLibs.sh to install any

missing libraries first. Once it completes, one can download the AMD Unified Installer - Self

Extracting Web Installer, proceed to run the bin file, and follow its instructions to complete

the installation.

Fig. 4: AMD Unified Installer SFD

Usage. Once the installation process has been completed successfully, by default, Vitis,

Vitis HLS, and Vivado file system can be found in /tools/Xilinx. One can follow the code

snippet below to run Vitis. A successful Vitis run from the terminal can be found in 5

1 $ source /tools/Xilinx/Vitis /2023.2/ settings64.sh

2 $ vitis # if one chooses to run Vitis

Fig. 5: Run Vitis from the terminal to launch Vitis GUI

5 HLS on TinyAES with Vitis HLS

In this section, we present the end-to-end steps of applying HLS on TinyAES [6], a

software unmasked implementation of AES algorithm written in C/C++, with Vitis HLS

6

tool. Unmasked indicates the implementation does not have countermeasures against side-

channel attacks. Given this software implementation as an input, the entire process outputs

an associated hardware implementation of AES written in Verilog/VHDL. In addition, the

hardware implementation is packed as an IP and this IP is integrated into a final hardware

design using Vivado. The final hardware design is then compiled into a bitstream file, which

is uploaded to a Digilent Arty A7-100T Artix-7 FPGA board for testing and verification.

For the presentation of this section, we will first briefly describe the entire workflow of using

Vitis HLS and Vivado in general. Next, we will introduce details of TinyAES and describe

each step of the entire workflow given TinyAES.

5.1 The General Workflow of HLS with Vitis HLS

Given a software implementation in C/C++, the general workflow of HLS using Vitis HLS

is shown in Fig. 6. First, after we launch Vitis, we create an HLS component by specifying

a target board (similar as creating a new project by specifying a target board in Vivado).

Next, we modify the C/C++ software implementation (if needed), create a main source file

with a top function, write a testbench file for it in C/C++. Next, we add the top function,

the source files, the testbench file into the HLS component by updating the configuration

of the HLS component. Next, we run C simulations to verify the input and output of the

modified software implementation to ensure its correctness. We then run HLS to generate the

hardware implementation written in Verilog or VHDL. Once the hardware implementation

is obtained, we run C/RTL co-simulation to ensure that the hardware implementation is

correct. Next, we perform packaging to generate an IP of this hardware implementation.

This ends the typical HLS process (i.e., from a software implementation to a hardware

implementation at the RTL-level). The remaining steps aim to further synthesize the design,

generate the bitstream file of the final design, and run it on the target board. While these

remaining steps are not parts of the typical HLS process, they are also relevant as the

hardware implementation at the RTL-level should be able to generate the bitstream file

and operate/verify correctly on the target board. It is worth mentioning that successfully

obtaining the hardware design at the RTL-level with HLS does not necessarily suggest its

compatibility with these remaining steps (e.g., some warnings may be ignored at the RTL-

level but can prevent successfully generating the bitstream files for the real target). Therefore,

we also present these remaining steps in the workflow to make the entire workflow self-

contained.

Given the generated IP, we can load it in Vivado and create a final hardware design by

providing function inputs to the IP and accessing function outputs from the IP. Next, we

7

Fig. 6: The workflow of HLS for the final FPGA design using Vitis HLS and Vivado

transform the hardware design at the RTL-level into the netlist level and fix any warnings/er-

rors. Then, we run the implementation in Vivado to create the bitstream file based on the

design at the netlist level and fix any I/O port issues given the constraint of the target board.

Finally, we program the FPGA target board with the bitstream file using Vivado hardware

manager and verify the final design on the FPGA. If the design runs correctly on the FPGA,

it completes the entire workflow. Otherwise, we fix the remaining issues/warnings until the

design on the FGPA is correct.

Throughout this entire process, we find that two major aspects/steps are particularly

challenging and significant for the case of HLS over TinyAES: (1) modifying the original soft-

ware implementation to make it compatible with Vitis HLS and the downstream bitstream

generation; and (2) running simulations/verification correctly at multiple levels (including

C, RTL, and FPGA). Sometimes, it requires revisiting the software/hardware code through

the process. We will describe the details of these steps later in this section.

5.2 Step 1: Create a New HLS Component

After we launch Vitis, we create a new HLS component by choosing “Create Component”

under “HLS Development” on the welcome screen. We will need to provide a name of this

HLS component and its location. After that, we need to create a configuration file (we select

default option: Empty File and provide a name of the new empty configuration file). Next,

we need to specify the top function name and source files. We leave them as empty (default)

for now and choose to add them later. Next, we need to specify the target board part, which

we choose the part as xc7a100tcsg324-1 for Digilient Arty A7 Artix-7 FPGA board in our

8

example. Please note that the part for Digilient Arty A7 Artix-7 FPGA board may not show

up in Vitis’s default directory. To address this, one can add the target board part to Vitis’s

directory by following the guide in 2. Once the target board’s files are added, one can then

continue with the process. Next, we need to specify the initial settings (e.g., clock, flow

target, etc.) for this HLS component. We leave them as default. This completes the step of

creating the new HLS component. Figures of the above steps are presented from Fig. 7 to

Fig. 12.

After we create this new HLS component, we will need to specify the top function, add

source files, and create testbench files to this HLS component. Since we need to modify the

source code of TinyAES and create testbench files in advance, we will discuss the details of

our modifications and the testbench files first. Then, we will describe how to include these

source files and testbench files in our HLS component.

5.3 Introduction to TinyAES

TinyAES is a small portable implementation of unmasked AES written in C, supporting

Electronic Code Block (ECB), Counter mode (CTR), and Cipher Block Chaining (CBC)

modes across all versions of AES: 128 bit, 192 bit, 256 bit. The source code for TinyAES

can be found here [6]. In this document, we focus on the following three files only from the

TinyAES repo.

– aes.h: Header file defines all AES encryption and decryption functions

– aes.c: Main file details all AES step functions and components

– test.c: Test file contains test scripts for verification

In this document, we focus on the source code associated with the encryption func-

tion of AES-128 using the ECB model only , which is sufficient for us to analyze

side-channel leakage of the hardware design. On the other hand, our discussion and method-

ology can be further extended to other modes of TinyAES.

After reviewing the original source code, the function AES ECB encrypt(), which per-

forms AES-128 encryption with ECB mode, can be found in aes.c at line 470. We highlight

the original code below as a reference for comparisons with later modified versions.

1 // Original version in TinyAES , at line 470 in aes.c

2 void AES_ECB_encrypt(const struct AES_ctx* ctx , uint8_t* buf){

3 // The next function call encrypts the PlainText with the Key using AES

algorithm.

2 https://digilent.com/reference/programmable-logic/guides/install-board-files

https://digilent.com/reference/programmable-logic/guides/install-board-files

9

Fig. 7: Welcome Screen of Vitis

Fig. 8: Step 1: Provide a project name and location

Fig. 9: Step 2: Create a new empty configuration file, named hls config

10

Fig. 10: Step 3: Specify top function and source files (we leave them as empty for now)

Fig. 11: Step 4: Specify target board part (choose/add xc7a100tcsg324-1)

Fig. 12: Step 5: Specify settings (choose default settings)

11

4 Cipher ((state_t *)buf , ctx ->RoundKey);

5 }

The Cipher() function performs the 10 rounds of AES operations, including AddKeys,

SubBytes, ShiftRows, and MixColumns, by following the standard AES algorithm. It can be

found at line 413 in aes.c. It takes a state t* (a 4 by 4 matrix) plaintext input converted

from 16 uint8 t array provided by AES ECB encrypt. The another argument is RoundKey,

which is the output of function KeyExpansion() (at line 146 in aes.c). We highlight the

original code below as a reference for comparisons with later modified versions.

1 // Original version in TinyAES , at line 413 in aes.c

2 static void Cipher(state_t* state , const uint8_t* RoundKey){

3 uint8_t round = 0;

4

5 // Add the First round key to the state before starting the rounds.

6 AddRoundKey (0, state , RoundKey);

7

8 // There will be Nr rounds.

9 // The first Nr -1 rounds are identical.

10 // These Nr rounds are executed in the loop below.

11 // Last one without MixColumns ()

12 for (round = 1; ; ++ round) {

13 SubBytes(state);

14 ShiftRows(state);

15

16 if (round == Nr) {

17 break;

18 }

19 MixColumns(state);

20 AddRoundKey(round , state , RoundKey);

21 }

22

23 // Add round key to last round

24 AddRoundKey(Nr, state , RoundKey);

25 }

5.4 Step 2: Modify TinyAES C/C++ Code

Unfortunately, applying HLS directly on the original TinyAES does not generate the

hardware implementation at the RTL level. There are many lines in the original C code of

TinyAES that are not compatible with the process using Vitis HLS. Therefore, we need to

modify the TinyAES C/C++ code without affecting the correctness of the AES encryption.

These modifications are also specific for the HLS process with Vitis HLS. Put differently, if

a different HLS tool is applied, the modifications may not be identical.

12

In the following, we highlight several main principles while we modify the source code

for the compatibility with Vitis HLS.

1. Vitis HLS does not support pointers well (e.g., having a pointer and performing multiple

operations on this pointer) and does not even support pointers to pointers at all. For

instance, between an array (e.g. uint8 t a[16]) and a pointer to array (e.g., uint8 t

*a ptr), using the array in the C code is more compatible with the HLS process with

Vitis HLS compared to using the pointer. We decide to avoid the use of the pointers as

much as we can.

2. Although reading from an array and writing to the same array at the same time is

permitted by the C/RTL Co-simulation, those arrays are translated into Single Port

RAM by default when it comes to the actual hardware design on an FPGA. As a result,

one can either read or write at one time, but not both (e.g., accessing two values from

an array, calculating the sum of the two, and updating a value in the same array). While

this can be potentially addressed by configuring an array as Dual Port RAM, we decide

to keep the default setting with Single Port RAM and avoid reading from and writing to

an array at the same time in the C code.

3. Although struct can be supported by Vitis HLS, we decide to avoid using struct for

simplicity in this document.

4. Conversion between non-native C datatype is prohibited. For example, if one use typedef

uint8 t state t[4][4] and they have a variable uint8 t a[16], if they later use state t*

b = (state t*)a, (state t*)a is a conversion between non-native C datatype as it tries

convert uint8 t into state t*

With the above four principles (referred to as the HLS principles) in mind, we make

modifications in the following functions, AES ECB encrypt(), Cipher(), AddRoundKey(),

SubBytes(), ShiftRows(), MixColumns(), KeyExpansion(), and AES init ctx(), in aes.c.

Modifications in AES ECB encrypt(). We first modify function AES ECB encrypt().

The first argument AES ctx* in the original code is a struct accessed by a pointer, which

allows one to access both IV (Initialization Vectors) and round keys. We update it as an array,

unit8 t RoundKey[AES keyExpSize], for holding round keys only to avoid using pointers

and struct. IV is not used in the ECB model anyway. AES keyExpSize is a global variable,

which was originally defined as 176 for AES-128 in aes.h. It indicates 176 bytes, which covers

all the bytes for the 11 subkeys after performing key expansion. For the second argument

buf, it is a pointer, we update it as an array unit8 t buf[AES BLOCKLEN] instead to hold

the plaintext. AES BLOCKLEN is a global variable, which was originally defined as 16 for

AES-128 in aes.h. It indicates 16 bytes in a block of a plaintext. In addition, we add an

13

additional argument, unit8 t enc[AES BLOCKLEN], to hold the ciphertext (i.e., output of

the encryption) without writing it back to buf[AES BLOCKLEN]. This addresses the potential

issues of reading from and writing to the same array.

These three modifications update the declaration of the function. The single line of func-

tion call on Cipher() is also updated accordingly. We explain the details of the modifications

in Cipher() next.

1 // Original version in TinyAES , at line 470 in aes.c

2 void AES_ECB_encrypt(const struct AES_ctx* ctx , uint8_t* buf){

3 // Encrypt the PlainText with the Key using AES algorithm.

4 Cipher ((state_t *)buf , ctx ->RoundKey);

5 }

1 // Modified version due to HLS

2 void AES_ECB_encrypt(const uint8_t RoundKey[AES_keyExpSize], const uint8_t buf[

AES_BLOCKLEN], unit8_t enc[AES_BLOCKLEN]){

3 // Encrypt the PlainText with the Key using AES algorithm.

4 Cipher(buf , RoundKey , enc);

5 }

Modifications in Cipher(). Specifically, the first argument state t* state is the

state, which is typically a 4 by 4 array, representing all the 16 bytes initialized by the

plaintext. The encryption keeps updating this state based on all the operations to derive

the ciphertext after 10 rounds. Instead of using pointer to pointer to represent this state,

we change it to a 1 dimensional array, unit8 t buf state[AES BLOCKLEN]. This does not

affect the correctness of the encryption as show in Fig. 13. The second argument unit8 t*

RoundKey is a pointer, and we modify it as an array unit8 t RoundKey[AES keyExpSize].

In addition, the original code keeps updating the state by reading from and writing to it,

which causes issues for the final hardware design. We add another array as an additional

argument unit8 t enc[AES BLOCKLEN] to hold the output without writing it back to the

first array unit8 t buf state[AES BLOCKLEN].

The original version and modified version of the function declaration are presented below.

1 // Original version in TinyAES , at line 413 in aes.c

2 static void Cipher(state_t* state , const uint8_t* RoundKey){

3

4 }

1 // Modified version due to HLS

2 static void Cipher(const uint8_t buf_state[AES_BLOCKLEN], const uint8_t RoundKey[

AES_keyExpSize], uint8_t enc[AES_BLOCKLEN]){

3

14

Fig. 13: A state representing as a 4×4 array of 16 bytes or a 1-dimensional array of 16 bytes.

4 }

For the code inside function Cipher(), we make the modifications accordingly by using

arrays instead of points and introducing an additional array for each step, including Ad-

dRoundKey, SubBytes, ShiftRows, and MixColumns, to hold the output without writing

back to the input array. The purpose of this is to transform single original array into a

separate input array and a separate output array to avoid reading from and writing to the

same array at the same time within the function. The original version and modified version

can be found below.

1 // Original version in TinyAES , at line 413 in aes.c

2 static void Cipher(state_t* state , const uint8_t* RoundKey){

3 uint8_t round = 0;

4

5 // Add the First round key to the state before starting the rounds.

6 AddRoundKey (0, state , RoundKey);

7

8 // There will be Nr rounds.

9 // The first Nr -1 rounds are identical.

10 // These Nr rounds are executed in the loop below.

11 // Last one without MixColumns ()

12 for (round = 1; ; ++ round) {

13 SubBytes(state);

14 ShiftRows(state);

15

16 if (round == Nr) {

17 break;

18 }

19 MixColumns(state);

20 AddRoundKey(round , state , RoundKey);

21 }

22 // Add round key to last round

15

23 AddRoundKey(Nr, state , RoundKey);

24 }

1 // Modified version due to HLS

2 static void Cipher(const uint8_t buf_state[AES_BLOCKLEN], const uint8_t RoundKey[

AES_keyExpSize], uint8_t enc[AES_BLOCKLEN]){

3

4 // An additional array to hold output without writing back to the input array

in the initial AddRoundKey

5 uint8_t temp_new_buf_state1[AES_BLOCKLEN];

6

7 // Add the First round key to the state before starting the rounds.

8 AddRoundKey (0, temp_new_buf_state1 , buf_state , RoundKey);

9

10 // An additional array to hold output from each step without writing back to

the input array in AddRoundKey , SubBytes , ShiftRows , or MixColumns

11 uint8_t temp_new_buf_state_round_1[AES_BLOCKLEN];

12

13 // The first 9 rounds

14 for (int i = 1; i <= 9; i++){

15

16 // A Round () function is introduced by us to simplify the code due to HLS

17 Round(i, temp_new_buf_state_round_1 , temp_new_buf_state1 , RoundKey);

18

19 // Copy array temp_new_buf_state_round_1 to array temp_new_buf_state1 ,

this avoids creating a new array to hold the output for every step

20 for (int i = 0; i < AES_BLOCKLEN; i++){

21 temp_new_buf_state1[i] = temp_new_buf_state_round_1[i];

22 }

23 }

24

25 // The last round , i.e., 10-th round

26 // An additional array to hold output from SubBytes in the 10-th round

27 uint8_t temp_new_buf_state_round_10_1[AES_BLOCKLEN];

28 SubBytes(temp_new_buf_state_round_10_1 , temp_new_buf_state_round_1);

29

30 // An additional array to hold output from ShiftRows in the 10-th round

31 uint8_t temp_new_buf_state_round_10_2[AES_BLOCKLEN];

32 ShiftRows(temp_new_buf_state_round_10_2 , temp_new_buf_state_round_10_1);

33

34 // An additional array to hold output from AddRoundKey in the 10-th round. It

is also the final output , i.e., ciphertext

35 uint8_t temp_new_buf_state_final[AES_BLOCKLEN];

36 AddRoundKey(Nr, temp_new_buf_state_final , temp_new_buf_state_round_10_2 ,

RoundKey);

37

38 // Copy the ciphertext to array enc

16

39 for (int i = 0; i < AES_BLOCKLEN; i++){

40 enc[i] = temp_new_buf_state_final[i];

41 }

42 }

As shown above, we introduce a function Round() to simplify the code of the first 9

rounds of AES inside the modified Cipher(). Each call of function Round() performs one

round of AES based on the round key decided by the round number. The code of Round()

is presented below.

1 // A new function in the modified version due to HLS

2 void Round(int round , uint8_t new_state[AES_BLOCKLEN], const uint8_t old_state[

AES_BLOCKLEN], const uint8_t RoundKey[AES_keyExpSize]{

3

4 // An additional array to hold output from SubBytes in round -th round.

5 uint8_t temp_new_buf_state_round_1[AES_BLOCKLEN];

6 SubBytes(temp_new_buf_state_round_1 , old_state);

7

8 // An additional array to hold output from ShiftRows in round -th round.

9 uint8_t temp_new_buf_state_round_2[AES_BLOCKLEN];

10 ShiftRows(temp_new_buf_state_round_2 , temp_new_buf_state_round_1);

11

12 // An additional array to hold output from MixColumns in round -th round.

13 uint8_t temp_new_buf_state_round_3[AES_BLOCKLEN;

14 MixColumns(temp_new_buf_state_round_3 , temp_new_buf_state_round_2);

15

16 AddRoundKey(round , new_state , temp_new_buf_state_round_3 , RoundKey);

17 }

Due to the modifications in Cipher(), we also need to modify AddRoundKey(), SubBytes(),

ShiftRows(), and MixColumns() accordingly. We present some selected details next.

Modifications in AddRoundKey().We apply the same principles to modify AddRoundKey().

Specifically, we replace pointers with arrays, add an additional array to hold output to avoid

reading from and writing to the same array at the same time within the function, and avoid

conversions between non-native C datatype.

1 // Original version in TinyAES , at line 237 in aes.c

2 static void AddRoundKey(uint8_t round , state_t* state , const uint8_t* RoundKey){

3

4 uint8_t i,j;

5 for (i = 0; i < 4; ++i){

6 for (j = 0; j < 4; ++j){

7 (* state)[i][j] ^= RoundKey [(round * Nb * 4) + (i * Nb) + j];

8 }

9 }

10 }

17

1 // Modified version due to HLS

2 static void AddRoundKey(uint8_t round , uint8_t new_state[AES_BLOCKLEN], const

uint8_t old_state[AES_BLOCKLEN], const uint8_t RoundKey[AES_keyExpSize]){

3

4 uint8_t i,j;

5 for (i = 0; i < 4; ++i){

6 for (j = 0; j < 4; ++j){

7 new_state [4*i + j] = old_state [4*i + j] ^ RoundKey [(round * Nb * 4) +

(i * Nb) + j];

8 }

9 }

10 }

The content of SubBytes(), ShiftRows(), and MixColumns() can also be updated sim-

ilarly with these principles. We only present the original and modified function definitions

below. We skip the detailed modified code for each of them in this document. These details

can be found in our repository [?].

1 // Original version in TinyAES at line 251 in aes.c

2 static void SubBytes(state_t* state) {

3

4 }

5

6 // Original version in TinyAES at line 266 in aes.c

7 static void ShiftRows(state_t* state) {

8

9 }

10

11 // Original version in TinyAES at line 300 in aes.c

12 static void MixColumns(state_t* state) {

13

14 }

1 // Modified version due to HLS

2 static void SubBytes(uint8_t new_state[AES_BLOCKLEN], const uint8_t old_state[

AES_BLOCKLEN]) {

3

4 }

5

6 // Modified version due to HLS

7 static void ShiftRows(uint8_t new_state[AES_BLOCKLEN], const uint8_t old_state[

AES_BLOCKLEN]) {

8

9 }

10

11 // Modified version due to HLS

18

12 static void MixColumns(uint8_t new_state[AES_BLOCKLEN], const uint8_t old_state[

AES_BLOCKLEN]) {

13

14 }

Modifications in KeyExpansion(). After we make modifications to the above functions,

we will need to make some minor changes to function KeyExpansion() and AES init ctx()

to make the code consistent by using the same principles. We highlight the modifications on

KeyExpansion() first. Specifically, we first update the arguments from pointers to arrays.

Second, we use four separate variables, including, tempa 0, tempa 1, tempa 2, tempa 3 rather

than an array tempa[4] used in the original version. In other words, we replace tempa[i]

with tempa i in the code. This is because there are some lines associated with tempa[i] can

lead to reading from and writing to the same array at the same time within the function. The

original version and modified version are presented below. Only the lines that are associated

with the modifications are presented.

1 // Original version in TinyAES , line 145 in aes.c

2 // This function produces Nb(Nr+1) round keys. The round keys are used in each

round to decrypt the states.

3 static void KeyExpansion(uint8_t* RoundKey , const uint8_t* Key) {

4 unsigned i, j, k;

5 uint8_t tempa [4]; // Used for the column/row operations

6

7

8

9 // All other round keys are found from the previous round keys.

10 for (i = Nk; i < Nb * (Nr + 1); ++i) {

11 k = (i - 1) * 4;

12 tempa [0]= RoundKey[k + 0];

13 tempa [1]= RoundKey[k + 1];

14 tempa [2]= RoundKey[k + 2];

15 tempa [3]= RoundKey[k + 3];

16

17 if (i % Nk == 0) {

18

19 const uint8_t u8tmp = tempa [0];

20 tempa [0] = tempa [1];

21 tempa [1] = tempa [2];

22 tempa [2] = tempa [3];

23 tempa [3] = u8tmp;

24

25 tempa [0] = getSBoxValue(tempa [0]);

26 tempa [1] = getSBoxValue(tempa [1]);

27 tempa [2] = getSBoxValue(tempa [2]);

28 tempa [3] = getSBoxValue(tempa [3]);

19

29

30 tempa [0] = tempa [0] ^ Rcon[i/Nk];

31 }

32

33

34 j = i * 4; k=(i - Nk) * 4;

35 RoundKey[j + 0] = RoundKey[k + 0] ^ tempa [0];

36 RoundKey[j + 1] = RoundKey[k + 1] ^ tempa [1];

37 RoundKey[j + 2] = RoundKey[k + 2] ^ tempa [2];

38 RoundKey[j + 3] = RoundKey[k + 3] ^ tempa [3];

39 }

40 }

1 // Modified version due to HLS

2 static void KeyExpansion(uint8_t RoundKey[AES_keyExpSize], const uint8_t Key[

AES_KEYLEN]) {

3

4 unsigned i, j, k;

5 uint8_t tempa_0 , tempa_1 , tempa_2 , tempa_3;

6

7 // remain the same

8

9 // All other round keys are found from the previous round keys.

10 for (i = Nk; i < Nb * (Nr + 1); ++i) {

11 k = (i - 1) * 4;

12 tempa_0=RoundKey[k + 0]; // replace tempa [0] with tempa_0

13 tempa_1=RoundKey[k + 1];

14 tempa_2=RoundKey[k + 2];

15 tempa_3=RoundKey[k + 3];

16

17 if (i % Nk == 0) {

18

19 const uint8_t u8tmp = tempa_0;

20 tempa_0 = tempa_1;

21 tempa_1 = tempa_2;

22 tempa_2 = tempa_3;

23 tempa_3 = u8tmp;

24

25 tempa_0 = getSBoxValue(tempa_0);

26 tempa_1 = getSBoxValue(tempa_1);

27 tempa_2 = getSBoxValue(tempa_2);

28 tempa_3 = getSBoxValue(tempa_3);

29

30 tempa_0 = tempa_0 ^ Rcon[i/Nk];

31 }

32

33 // remove the lines from #if to #endif as they are not related to AES -128.

20

34

35 j = i * 4; k=(i - Nk) * 4;

36 RoundKey[j + 0] = RoundKey[k + 0] ^ tempa_0;

37 RoundKey[j + 1] = RoundKey[k + 1] ^ tempa_1;

38 RoundKey[j + 2] = RoundKey[k + 2] ^ tempa_2;

39 RoundKey[j + 3] = RoundKey[k + 3] ^ tempa_3;

40 }

41 }

Modifications in AES init ctx().Next, we make modifications on function AES init ctx()

by replacing the pointers with arrays.

1 // Original version in TinyAES , line 219 in aes.c

2 void AES_init_ctx(struct AES_ctx* ctx , const uint8_t* key) {

3 KeyExpansion(ctx ->RoundKey , key);

4 }

1 // Modified version due to HLS

2 void AES_init_ctx(uint8_t RoundKey[AES_keyExpSize], const uint8_t key[AES_KEYLEN])

3 {

4 KeyExpansion(RoundKey , key);

5 }

Removing lines that are not related to the ECB mode. One should also remove

lines that are not associated with the ECB mode. These are typically contained in a #if -

#endif block. For example, the following lines should be removed in the modified version.

1 // Original version in TinyAES , line 223 to line 233 in aes.c; Removing those

lines in the modified version

2 #if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))

3 void AES_init_ctx_iv(struct AES_ctx* ctx , const uint8_t* key , const uint8_t* iv) {

4 KeyExpansion(ctx ->RoundKey , key);

5 memcpy (ctx ->Iv, iv, AES_BLOCKLEN);

6 }

7 void AES_ctx_set_iv(struct AES_ctx* ctx , const uint8_t* iv) {

8 memcpy (ctx ->Iv, iv, AES_BLOCKLEN);

9 }

10 #endif

Modifications in aes.h. Once we complete all the above modifications, we need to

make the associated changes in aes.h. Specifically, we remove all the function declarations

that are not associated with the ECB mode.

1 // Modified version due to HLS

2

3 // remain the same

4 #else

21

5 #define AES_KEYLEN 16 // Key length in bytesW

6 #define AES_keyExpSize 176

7 #endif

8

9 // remove struct AES_ctx as we avoid using struct in HLS

10

11 void AES_init_ctx(uint8_t RoundKey[AES_keyExpSize], const uint8_t key[AES_KEYLEN])

;

12

13 #if defined(ECB) && (ECB == 1)

14 void AES_ECB_encrypt(const uint8_t RoundKey[AES_keyExpSize], const uint8_t buf[

AES_BLOCKLEN], uint8_t enc[AES_BLOCKLEN]);

15 #endif

16

17 // end of the file , remove the remaining lines

Turn Off Pipeline Optimization for For Loops. When we investigate our down-

stream hardware design, we find that for loops in C can create multiple time violations

with the default control flow pipeline optimization in Vitis HLS. To address this issue, we

decide to turn off the pipeline for every for loop. Specifically, we go through aes.c and add

one additional line inside each for loop. One example code is listed below. As a tradeoff, it

increases area and latency of our hardware design.

1 // Modified version due to HLS

2 ...

3 for (i = 0; i < Nk; ++i) {

4 #pragma HLS pipeline off // add an additional line to turn off pipeline

5 RoundKey [(i * 4) + 0] = Key[(i * 4) + 0];

6 RoundKey [(i * 4) + 1] = Key[(i * 4) + 1];

7 RoundKey [(i * 4) + 2] = Key[(i * 4) + 2];

8 RoundKey [(i * 4) + 3] = Key[(i * 4) + 3];

9 }

10 ...

If you reach this point, Congratulations! You have completed all the necessary modifica-

tions in the original TinyAES C code.

5.5 Step 3: Write the Main Source File

Next, we will need to write a main source file for our Vitis HLS component, which contains

a top function. Given the inputs, the main source file will perform the program and provide

an output. In our case, given two inputs, a plaintext and a key, this main source file will

perform the function, i.e., AES128-ECB encryption (in our case), and outputs a ciphertext.

22

Although Vitis HLS supports both C (.c) and C++ (.cpp) as the format of a main

source file, it is recommended to use C++. On the other hand, within a main source file

in .cpp format, it is recommended to use the native C library and coding style as C++

functionalities may not be fully supported. Therefore, we write our main source file in C

native code but save it as .cpp. Specifically, we name it as test.cpp.

Ideally, we should directly write the main source file with two inputs (plaintext and

key) and one output (a ciphertext) for the final product. However, since this is still in the

design phase, testing and verification is important. Our first version of this main source file

is essentially a test case, which verifies the correctness of our design. Specifically, we will

write a top function and we call our modified versions of function AES init ctx() and then

function AES ECB encrypt() (from the last section) given a known plaintext and a known

key inside the top function. Then, we compare the output with a known ciphertext to test

the correctness of our modified C program inside this top function. To achieve this, we also

rename our modified aes.c file as aes c.h file such that we can leverage it as a header file

in our main source file. Our first version of this main source file is listed below.

1 // Our first version of the main source file test.cpp for HLS

2 #include <cstdint >

3 #include <stdint.h>

4 #include <math.h>

5 #include <ap_int.h>

6 #include <stdio.h>

7 #include <ap_axi_sdata.h>

8 #include <sys/types.h>

9

10 #ifndef AES_H

11 #define AES_H

12 #include "aes.h"

13 #endif

14

15 #ifndef AES_C_H

16 #define AES_C_H

17 #include "aes_c.h"

18 #endif

19

20 static int test_encrypt_ecb(uint8_t key[16], uint8_t plaintext [16], uint8_t

ciphertext [16], uint8_t RoundKey[AES_keyExpSize]){

21

22 AES_init_ctx(RoundKey , key); // initialize the key with KeyExpansion ()

23 AES_ECB_encrypt(RoundKey , plaintext , ciphertext); // perform AES128 -ECB

24

25 return 0;

26 }

23

27

28 // Our top function

29 void run_test_input (){

30

31 uint8_t RoundKey[AES_keyExpSize];

32 // a known plaintext

33 uint8_t plaintext [16] = {0x6b , 0xc1 , 0xbe , 0xe2 , 0x2e , 0x40 , 0x9f , 0x96 , 0xe9 ,

0x3d , 0x7e , 0x11 , 0x73 , 0x93 , 0x17 , 0x2a};

34 // a known key

35 uint8_t key [16] = {0x2b , 0x7e , 0x15 , 0x16 , 0x28 , 0xae , 0xd2 , 0xa6 , 0xab , 0xf7 ,

0x15 , 0x88 , 0x09 , 0xcf , 0x4f , 0x3c};

36 // a known ciphertext based on the plaintext and key

37 uint8_t expected_output [16] = {0x3a , 0xd7 , 0x7b , 0xb4 , 0x0d , 0x7a , 0x36 , 0x60 ,

0xa8 , 0x9e , 0xca , 0xf3 , 0x24 , 0x66 , 0xef , 0x97};

38

39 uint8_t ciphertext [16];

40

41 // call AES_init_ctx and AES_ECB_encrypt

42 test_encrypt_ecb(key , plaintext , ciphertext , RoundKey);

43

44 // compare each byte in the ciphertext one by one , if correct , pass remains as

0x50 , otherwise it is updated to 0x10

45 int pass = 0x50;

46 for (int i = 0; i < 16; i ++) {

47 if (enc[i] != expected_output[i]) {

48 pass = 0x10;

49 break;

50 }

51 }

52

53 // report our verification result

54 if (pass == 0x50) {

55 printf("Passes\n");

56 } else {

57 printf("Fails\n");

58 }

59 }

While the first version of the main file test.cpp is sufficient for us to verify the correctness

of the C program, it is not sufficient for us to generate the hardware design in Verilog or

VHDL using Vitis HLS. This is because (1) we need to pass plaintext and key as input

and provide the ciphertext as output of an IP that we will generate based on the RTL-level

design; (2) we need to modify the code to make it Vitis HLS compatible. Therefore, we need

to make some modifications in the test.cpp.

24

First, we add multiple arguments to the top function. We add ap input<8> *p to hold

the result of the comparison check on the ciphertext. Vitis HLS uses ap int<N> to define

arbitrary precision integer data type, where N is the bit-size of the integer and N can be from

1 to 1024. We also add four arguments, uint8 t plaintext[16] to hold the plaintext as an

input, uint8 t key[16] to hold the key as an input, uint8 t expected ciphertext[16]

to hold the expected ciphertext (pre-calculated) as an input, and uint8 t ciphertext[16]

to hold the ciphertext as an output. Keeping the result of the comparison check will allow

us to perform the on-device verification later. Note that since we only use *p once (assigning

a value to it), there is only one operation for the pointer, which is fine. We do not need to

replace this pointer with an array as before.

Besides adding these arguments, we also need to add HLS parameters in the main source

file to (1) handle FPGA I/O ports, (2) optimize the RAM usage for S-box and reverse

S-box, and (3) turn off optimizations on for loops. Specifically, Vitis HLS packages syn-

thesized modules into an FPGA IP which can be loaded into Vivado for block design later.

To configure I/O ports, we need to add HLS parameter #pragma HLS INTERFACE

mode=<mode> port=<name> [OPTIONS] in the code. More information can be

found in the following link 3. By default, Vitis HLS configures every input/output of the top

function with mode ap none (only data port with no associated signal). In our investigation,

we find that the best way to build input and output port is using mode ap ovld (port with

valid signal if data is ready). Although the return port is not entirely relevant in our exam-

ple, one should configure return port as either ap ctrl hs, ap ctrl none, or s axilite. For

normal use (in our example), the return port is tied to ap ctrl none.

In our example, TinyAES makes use of two large arrays, one for sbox (S box) and one

for rsbox (Reverse S box). This can consume much RAM usage for the synthesized model.

To address this, we use #pragma HLS array parition variable=... complete to split

a large array into individual variables to reduce RAM usage. There is a for loop when we

check the correctness of the output ciphertext. Similar as modifying the code in aes.c, we

add a line with #pragma HLS pipeline off within this loop to turn optimization off. The

printf() function is also removed as HLS (in general) does not support printf() function.

We basically move this part of the code related to the printf() function to our testbench

file later.

With the above updates, we now have our second version of our main source file below

1 // Our second version of the main source file test.cpp for HLS

2 ... // remain the same

3 https://docs.amd.com/r/en-US/ug1399-vitis-hls/HLS-Pragmas

https://docs.amd.com/r/en-US/ug1399-vitis-hls/HLS-Pragmas

25

3 void run_test_input(ap_uint <8> *p, uint8_t ciphertext [16], uint8_t plaintext [16],

uint8_t key[16], uint8_t expected_ciphertext [16]) {

4 // set the FPGA I/O ports

5 #pragma HLS INTERFACE mode=ap_ovld port=plaintext

6 #pragma HLS INTERFACE mode=ap_ovld port=key

7 #pragma HLS INTERFACE mode=ap_ovld port=expected_ciphertext

8 #pragma HLS INTERFACE mode=ap_ovld port=ciphertext

9 #pragma HLS INTERFACE mode=ap_ovld port=p

10 #pragma HLS INTERFACE mode=ap_ctrl_none port=return // this line needs to be

disabled when run C sythesis and C/RTL -simulation but enabled when run C

sythesis and generate the IP

11

12 // reduce RAM usage for S box and reverse S box

13 #pragma HLS array_partition variable=sbox type=complete

14 #pragma HLS array_partition variable=rsbox type=complete

15

16 uint8_t RoundKey[AES_keyExpSize];

17

18 uint8_t ciphertext_temp [16];

19

20 test_encrypt_ecb(key , plaintext , ciphertext_temp , RoundKey);

21

22 int pass = 0x50;

23

24 for (int i = 0; i < 16; i++){

25 // turn optimization off for this for loop

26 #pragma HLS pipeline off

27 if (ciphertext_temp[i] != expected_ciphertext[i]) {

28 pass = 0x10;

29 break;

30 }

31 }

32

33 // copy ciphertext

34 for (int i = 0; i < 16; i++){

35 ciphertext[i] = ciphertext_temp[i];

36 }

37

38 *p = pass;

39 }

5.6 Step 4: Write the Testbench file

After we create the main source file above, we will need to create the testbench file,

which is for running the C simulation and (later) C/RTL co-simulation of the entire design

in our HLS component. We name our testbench file as testbench simulation.cpp. This

26

testbench file contains a main() function. In the main() function, we read key, plaintext,

and expected ciphertext from key.txt, plaintext.txt, and expected ciphertext.txt,

call the top function in the main source file to run AES-128-ECB encryption, and print out

the result of the verification. It is worth mentioning that, unlike the source files above (i.e.,

aes.h, aes c.h, test.cpp), this testbench file is only for C simulation and C/RTL co-simulation,

and will not be part of the hardware design on FPGA. In other words, we do not need to

apply the previous HLS principles to modify the C code in the testbench file.

It is also worth mentioning that we particularly load key, plaintext, and expected cipher-

text from files rather than hard-coding them in the testbench file. Although this leads to

more lines of code in the testbench file to handle reading content from files, it scales well

when we need to replace plaintexts or keys for generating different simulated traces for our

pre-silicon side-channel analysis. The code of this testbench file is presented below.

1 // Our testbench file testbench_simulation.cpp for C simulation

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include <string.h>

5 #include <stdint.h>

6 #include <stdbool.h>

7 #include <sys/types.h>

8 #include <ap_int.h>

9

10 // a function transforms characters from hex to decimal

11 int hex_to_decimal(char hex) {

12 switch(hex) {

13 case ’0’:

14 return 0;

15 break;

16 case ’1’:

17 return 1;

18 break;

19 case ’2’:

20 return 2;

21 break;

22 case ’3’:

23 return 3;

24 break;

25 case ’4’:

26 return 4;

27 break;

28 case ’5’:

29 return 5;

30 break;

31 case ’6’:

27

32 return 6;

33 break;

34 case ’7’:

35 return 7;

36 break;

37 case ’8’:

38 return 8;

39 break;

40 case ’9’:

41 return 9;

42 break;

43 case ’a’:

44 return 10;

45 break;

46 case ’b’:

47 return 11;

48 break;

49 case ’c’:

50 return 12;

51 break;

52 case ’d’:

53 return 13;

54 break;

55 case ’e’:

56 return 14;

57 break;

58 case ’f’:

59 return 15;

60 break;

61 default:

62 return 0;

63 break;

64 }

65 }

66

67 // a function transforms a string to a an array of integers.

68 void hexstring_to_uint8_tarray(char input[], int input_size , uint8_t *

output_uint8_t) {

69 for (int i = 0; i < input_size; i += 2) {

70 output_uint8_t[i / 2] = (uint8_t)(16 * hex_to_decimal(input[i]) +

hex_to_decimal(input[i + 1]));

71 }

72 }

73

74 // a function prints out an array of integers in hex for easier observation from

the terminal.

75 static void phex(uint8_t* str) {

28

76 uint8_t len = 16;

77 unsigned char i;

78 for (int i = 0; i < len; ++i) {// int declariation was missing in the code , at

least from the version I have , could you please double check?

79 printf("%.2x", str[i]);

80 }

81 printf("\n");

82 }

83

84 // the name of our top function defined in our main source file

85 void run_test_input(ap_uint <8> *p, uint8_t ciphertext [16], uint8_t plaintext [16],

uint8_t key[16], uint8_t expected_ciphertext [16]);

86

87 // The main function

88 int main(){

89

90 int exit = 0;

91 FILE *file_key;

92 FILE *file_in;

93 FILE *file_out;

94 ap_uint <8> p;

95 uint8_t ciphertext [16];

96

97 int key_size = 16 * 2;

98 int plaintext_size = 16 * 2;

99 int expected_ciphertext_size = 16 * 2;

100

101 char key_str[key_size + 1];

102 char plaintext_str[plaintext_size + 1];

103 char expected_ciphertext_str[expected_ciphertext_size + 1];

104

105 uint8_t key_uint8_t[key_size];

106 uint8_t plaintext_uint8_t[plaintext_size];

107 uint8_t expected_ciphertext_uint8_t[expected_ciphertext_size];

108

109 // read the key

110 file_key = fopen("./key.txt", "r");

111 if (NULL == file_key) {

112 quick_exit (0);

113 }

114 fgets(key_str , sizeof(key_str), file_key);

115 fclose(file_key);

116 hexstring_to_uint8_tarray(key_str , strlen(key_str), key_uint8_t);

117

118 // read the plaintext

119 file_in = fopen("./ plaintext.txt", "r");

120 if (NULL == file_in) {

29

121 quick_exit (0);

122 }

123 fgets(plaintext_str , sizeof(plaintext_str), file_in);

124 fclose(file_in);

125 hexstring_to_uint8_tarray(plaintext_str , strlen(plaintext_str),

plaintext_uint8_t);

126

127 // read the expected ciphertext

128 file_out = fopen("./ expected_ciphertext.txt", "r");

129 if (NULL == file_out) {

130 quick_exit (0);

131 }

132 fgets(expected_ciphertext_str , sizeof(expected_ciphertext_str), file_out);

133 fclose(file_out);

134 hexstring_to_uint8_tarray(expected_ciphertext_str , strlen(

expected_ciphertext_str), expected_ciphertext_uint8_t);

135

136 printf("\nSimulation␣starts:␣\n");

137 printf("Key:␣");

138 phex(key_uint8_t);

139 printf("\n");

140 printf("Plaintext:␣");

141 phex(plaintext_uint8_t);

142 printf("\n");

143 printf("Expected␣output:␣");

144 phex(expected_ciphertext_uint8_t);

145 printf("\n");

146

147 // call our top function

148 run_test_input (&p, ciphertext , plaintext_uint8_t , key_uint8_t ,

expected_ciphertext_uint8_t);

149

150 // show the verification result

151 printf("p␣=␣%d\n", p);

152 if (p == 0x50) {

153 printf("Passes\n");

154 } else {

155 printf("Fails\n");

156 }

157 printf("\nSimulation␣ends:␣\n");

158

159 return 0;

160 }

30

We also create key.txt, plaintext.txt, and expected ciphertext.txt by providing the following

key, plaintext, and expected ciphertext, respectively. They are the same key, plaintext, and

expected ciphertext we used in the first version of our main source file test.cpp.

1 // a known plaintext in plaintext.txt

2 6bc1bee22e409f96e93d7e117393172a

1 // a known key in key.txt

2 2b7e151628aed2a6abf7158809cf4f3c

1 // a known output ciphertext in expected_ciphertext.txt

2 3ad77bb40d7a3660a89ecaf32466ef97

5.7 Step 5: Specify the Top Function and Run C Simulation

Given all the modified source files and the testbench files, we will need to add them and

specify the top function in our HLS component for TinyAES in order to run C simulation and

downstrean tasks. To update these configurations, we just need to update the configuration

file (named as hls config.cfg in our example) using one of the two ways:

1. Manually modify the file hls config.cfg, which can be found at /hls config.cfg.

2. Leverage Vitis’s GUI to modify the file hls config.cfg, which can be found under the

HLS component we created in Step 1 (as shown in Fig. 14).

Fig. 14: The configuration file can be found under “Settings” of our HLS component.

In this example, we add testbench simulation.cpp, key.txt, plaintext.txt, ex-

pected ciphertext.txt as testbench files, aes.h, aes c.h, and test.cpp as input files, and

run top input as top function name. The content of the configuration file hls config.cfg

after these updates is presented below:

31

1 part=xc7a100tcsg324 -1 # part for Digilient Arty A7 Artix -7 FPGA board

2

3 [hls]

4 syn.top=run_test_input # set the top function

5 tb.file=key.txt # added as a testbench file

6 tb.file=plaintext.txt # added as a testbench file

7 tb.file=expected_ciphertext.txt # added as a testbench file

8 tb.file=testbench_simulation.cpp # added as a testbench file

9 cosim.trace_level=all # capture all signal when running co -simulation

10 csim.code_analyzer =0

11 syn.interface.clock_enable =0

12 syn.file=aes.h # added as a source file

13 syn.file=aes_c.h # added as a source file

14 syn.file=test.cpp # added as a (main) source file containing the top function

Fig. 15: Functionalities within a HLS component

Once we complete the above steps, we can run C simulation. Specifically, we can click

“Run” under “C Simulation” of our HLS component as shown in Fig. 15. Vitis compiles the

C code and generates binaries using Clang as the compiler. The results of a successful C

simulation can be found below. Besides the information we intend to print out, Vitis HLS also

reports CPU time, peak memory usage, and total time, which is 7 seconds in this example.

32

1 Simulation starts:

2 Key: 2b7e151628aed2a6abf7158809cf4f3c

3 Plaintext: 6bc1bee22e409f96e93d7e117393172a

4 Expected output: 3ad77bb40d7a3660a89ecaf32466ef97

5 p = 80

6 Passes

7

8 Simulation ends:

9 INFO: [SIM 211 -1] CSim done with 0 errors.

10 INFO: [SIM 211 -3] *************** CSIM finish ***************

11 INFO: [HLS 200 -111] Finished Command csim_design CPU user time: 1.29 seconds. CPU

system time: 0.25 seconds. Elapsed time: 1.56 seconds; current allocated memory

: 0.000 MB.

12 INFO: [HLS 200 -1510] Running: close_project

13 INFO: [HLS 200 -112] Total CPU user time: 3.42 seconds. Total CPU system time: 0.52

seconds. Total elapsed time: 3.73 seconds; peak allocated memory: 274.531 MB.

14 INFO: [Common 17 -206] Exiting vitis_hls at Mon Jan 13 17:00:58 2025...

15 INFO: [vitis -run 60 -791] Total elapsed time: 0h 0m 7s

16 C-simulation finished successfully

If the C simulation is successful, one can move on to the next step. On the other hand,

if there is any compilation issue, an error flag will be raised when running the C simulation

and the simulation will break immediately. In that case, one will need to debug the testbench

file and source files to ensure everything is correct.

5.8 Step 6: Run HLS to Generate Verilog/VHDL Code

Once the above C simulation is successful, we can click “Run” under “C Synthesis” to

generate our design at the RTL level. Vitis HLS is capable of generating the RTL level design

in Verilog and VHDL separately but at the same time without any further specification or

configuration. In other words, we obtain two versions of the RTL level design after we click

“Run” under “C Synthesis”, one in Verilog and one in VHDL. The version in Verilog can

be found in <path to hls component>/hls/syn/verilog and the version in VHDL can be

found under <path to hls component>/hls/syn/vhdl

Special Note. It is worth mentioning that before we run “C Synthesis”, if we would like

to run the later C/RTL co-simulation based on the design generated by C Synthesis, we need

to comment out the return port tied to ap ctrl none, i.e., line 7, in function run test input

in main source file test.cpp.

1 // comment out this line if one would like to generate the RTL code and run C/RTL

co -simulation , however , still enable this line if one would like to generate

the RTL code and other downstream steps.

33

2 #pragma HLS INTERFACE mode=ap_ctrl_none port=return // line 7 in function

run_test_input in test.cpp

Otherwise, the following errors will occur later on during the C/RTL co-simulation.

1 [ERROR] ERROR: [COSIM 212 -345] Cosim only supports the following ’ap_ctrl_none ’

designs: (1) combinational designs; (2) pipelined design with II of 1; (3)

designs with array streaming or hls_stream or AXI4 stream ports.

2 [ERROR] ERROR: [COSIM 212-5] *** C/RTL co -simulation file generation failed. ***

3 [ERROR] ERROR: [COSIM 212-4] *** C/RTL co -simulation finished: FAIL ***

4 INFO: [HLS 200 -111] Finished Command cosim_design CPU user time: 0.22 seconds.

CPU system time: 0.06 seconds. Elapsed time: 0.29 seconds; current allocated

memory: 3.336 MB.

5 INFO: [HLS 200 -1510] Running: close_project

6 ERROR:

7 INFO: [HLS 200 -112] Total CPU user time: 2.31 seconds. Total CPU system time:

0.35 seconds. Total elapsed time: 2.45 seconds; peak allocated memory: 277.801

MB.

8 INFO: [Common 17 -206] Exiting vitis_hls at Tue Jan 14 11:37:17 2025...

9 [ERROR] Failed to run co -simulation

A successful example of C Synthesis is presented below as a reference.

1 INFO: [HLS 200 -111] Finished Creating RTL model: CPU user time: 0.25 seconds. CPU

system time: 0.02 seconds. Elapsed time: 0.28 seconds; current allocated memory

: 354.008 MB.

2 INFO: [HLS 200 -111] Finished Generating all RTL models: CPU user time: 0.34

seconds. CPU system time: 0.02 seconds. Elapsed time: 0.37 seconds; current

allocated memory: 362.719 MB.

3 INFO: [HLS 200 -111] Finished Updating report files: CPU user time: 0.48 seconds.

CPU system time: 0.02 seconds. Elapsed time: 0.5 seconds; current allocated

memory: 366.617 MB.

4 INFO: [VHDL 208 -304] Generating VHDL RTL for run_test_input.

5 INFO: [VLOG 209 -307] Generating Verilog RTL for run_test_input.

6 INFO: [HLS 200 -790] **** Loop Constraint Status: All loop constraints were

satisfied.

7 INFO: [HLS 200 -789] **** Estimated Fmax: 138.33 MHz

8 INFO: [HLS 200 -111] Finished Command csynth_design CPU user time: 9.5 seconds. CPU

system time: 1.32 seconds. Elapsed time: 15.19 seconds; current allocated

memory: 92.266 MB.

9 INFO: [HLS 200 -1510] Running: close_project

10 INFO: [HLS 200 -112] Total CPU user time: 11.67 seconds. Total CPU system time: 1.6

seconds. Total elapsed time: 17.45 seconds; peak allocated memory: 366.750 MB.

11 INFO: [Common 17 -206] Exiting vitis_hls at Mon Jan 13 17:15:07 2025...

12 INFO: [v++ 60 -791] Total elapsed time: 0h 0m 21s

13 Synthesis finished successfully

34

The Verilog version of our RTL level design contains 17 files, as shown in 16. The .dat

files are used for storing ROM data (key, expected output, etc. in our source code). The

remaining Verilog files contain top function module and other modules. The total number

of lines of the entire design is about 12,000 across all the .v files. (run test input.v is

generated from our top function, and serves as the top module for our RTL design. The first

25 lines of run test input.v are presented below as a reference.

1 // ==

2 // Generated by Vitis HLS v2023 .2

3 // Copyright 1986 -2022 Xilinx , Inc. All Rights Reserved.

4 // Copyright 2022 -2023 Advanced Micro Devices , Inc. All Rights Reserved.

5 // ==

6

7 ‘timescale 1 ns / 1 ps

8

9 (* CORE_GENERATION_INFO="run_test_input_run_test_input ,hls_ip_2023_2 ,{

HLS_INPUT_TYPE=cxx ,HLS_INPUT_FLOAT =0, HLS_INPUT_FIXED =0, HLS_INPUT_PART=xc7a100t -

csg324 -1, HLS_INPUT_CLOCK =10.000000 , HLS_INPUT_ARCH=others ,HLS_SYN_CLOCK

=7.229000 , HLS_SYN_LAT =1918 , HLS_SYN_TPT=none ,HLS_SYN_MEM =1, HLS_SYN_DSP =0,

HLS_SYN_FF =514, HLS_SYN_LUT =10375 , HLS_VERSION =2023_2}" *)

10

11 module run_test_input (

12 ap_clk ,

13 ap_rst ,

14 ap_start ,

15 ap_done ,

16 ap_idle ,

17 ap_ready ,

18 p,

19 p_ap_vld ,

20 out1 ,

21 out1_ap_vld ,

22 plaintext_address0 ,

23 plaintext_ce0 ,

24 plaintext_q0

25);

26

At this point, we have successfully generated a design at the RTL level.

5.9 Step 7: Run C/RTL Co-Simulation (Optional)

After we generate the design at the RTL level, we can (optionally) choose to perform

C/RTL co-simulation. Specifically, we can run the C/RTL co-simulation by click “Run”

35

Fig. 16: File generated after running C Synthesis

under “C/RTL Co-simulation” The testbench file, i.e., testbench simulation.cpp, is used for

both C/RTL co-simulation. No additional files need to be created. The purpose of C/RTL

Co-simulation is to ensures the results of the C program and the RTL level design are

consistent given the same testbench. It is done by running the simulation with the stimuli

from C testbench input, capturing the output data from the simulation waveform, and check

the waveform against the results produced by the original C source. A successful example of

C/RTL co-simulation is presented below as a reference. It took 31 seconds to complete the

C/RTL co-simulation.

1 Simulation starts:

2 Key: 2b7e151628aed2a6abf7158809cf4f3c

3 Plaintext: 6bc1bee22e409f96e93d7e117393172a

4 Expected output: 3ad77bb40d7a3660a89ecaf32466ef97

5

6 p = 80

7 Passes

8

9 Simulation ends:

10 INFO: [COSIM 212 -1000] *** C/RTL co-simulation finished: PASS ***

11 INFO: [COSIM 212 -211] II is measurable only when transaction number is greater

than 1 in RTL simulation. Otherwise , they will be marked as all NA. If user

wants to calculate them , please make sure there are at least 2 transactions in

RTL simulation.

36

12 INFO: [HLS 200 -111] Finished Command cosim_design CPU user time: 25.2 seconds. CPU

system time: 2.39 seconds. Elapsed time: 25.4 seconds; current allocated

memory: 16.328 MB.

13 INFO: [HLS 200 -1510] Running: close_project

14 INFO: [HLS 200 -112] Total CPU user time: 27.36 seconds. Total CPU system time:

2.66 seconds. Total elapsed time: 27.62 seconds; peak allocated memory: 290.793

MB.

15 INFO: [Common 17 -206] Exiting vitis_hls at Mon Jan 13 17:18:18 2025...

16 INFO: [vitis -run 60 -791] Total elapsed time: 0h 0m 31s

17 Co -simulation finished successfully

5.10 Generate a Simulated Trace from C/RTL Co-Simulation (Optional)

Generating a VCD File for Pre-Silicon Side-Channel Analysis. For our research

in pre-silicon side-channel analysis, we also would like to save the waveform from the RTL

simulation into a VCD file, which can be used to generate a simulated trace of an AES

execution based on our RTL design. There are two opportunities to generate a VCD file in

our pipeline, one is from C/RTL co-simulation in Vitis HLS and one is from simulation of the

final design in Vivado. While we prefer to obtain the VCD file from the final design in Vivado

later as the one we run in C/RTL co-simulation still carry many verification components,

we describe the process of generating a VCD file from C/RTL co-simulation below.

As Vitis HLS C/RTL co-simulation does not output a VCD file directly, we need to make

some additional changes in the setting of the HLS component. In our example, we follow the

instructions from 4 to dump the VCD file. Specifically, assuming that we have run the above

C/RTL simulation at least once, we go to <path to hls component>/hls/sim/verilog and

find the following two files.

1 run_xsim.sh

2 run_test_input.tcl # the name is based on the name of your top function

In file run xsim.sh, add -debug all option to the xelab line (likely the first line) to

enable trace logging. In file run test input.tcl, add the following lines at the beginning of the

file to dump VCD

1 open_vcd

2 log_vcd [get_object /*]

3 run all

4 close_vcd

5 quit

4 https://lyftfc.github.io/research/fpga/2022/01/23/vitis-hls-xsim-wvf.html

37

After the updates, we run the RTL simulation again (by running sim.sh in the same direc-

tory), and a dump.vcd file should be generated under <path to hls component>/hls/sim/verilog.

An example of the first 20 lines of dump.vcd is presented below as a reference.

1 $date

2 Thu Jan 16 14:02:30 2025

3 $end

4

5 $version

6 2023.2

7 $end

8

9 $timescale

10 1ps

11 $end

12

13 $scope module apatb_run_test_input_top $end

14 $var reg 1 ! AESL_clock $end

15 $var reg 1 "␣rst␣$end

16 $var␣reg␣1␣#␣dut_rst␣$end

17 $var␣reg␣1␣$␣start␣$end

18 $var␣reg␣1␣%␣ce␣$end

19 $var␣reg␣1␣&␣tb_continue␣$end

20 $var␣wire␣1␣’␣AESL_start␣$end

Generating a Simulated Trace from a VCD File. Once we obtain a VCD file above,

we need to generate a simulated trace for pre-silicon side-channel analysis. This simulated

trace represents the estimated power consumption of the RTL design of AES ecnryption at

each timestamp given a plaintext and a key. To generate a simulated trace from a VCD file,

we utilize TOFU [9], which parses a VCD file and calculates/simulates power consumption

based on toggle counts in the VCD file. Assuming that TOFU has been installed correctly,

there are two factors we need to keep in mind when we generate a simulated trace from a

VCD file.

1. TOFU cannot parse empty lines in a VCD file

2. TOFU cannot parse integer datatype in a VCD file.

In our VCD file dump.vcd, there are multiple empty lines (e.g., line 4, 8, 12, etc.) and

multiple lines with integer datatype (e.g., line 54, 55, and 56). We write the following

Python script to (1) remove empty lines and (2) replace integer with reg in a VCD file.

1 # Our fix_vcd.py file to process a VCD file for simulated trace generation

2 import os

3

4 vcd_file = "./dump.vcd"

38

5

6 with open("{0}".format(vcd_file), "r") as f:

7 lines = f.readlines () # read all lines

8 tmp_lines = []

9 for i in range(len(lines)):

10 tmp = None

11

12 if "integer" in lines[i]:

13 tmp = lines[i]. replace("integer", "reg") # change integer into reg

14 else:

15 tmp = lines[i]

16

17 if tmp != "\n":

18 tmp_lines.append(tmp) # remove any empty line

19

20 with open("{0}".format(vcd_file), "w") as f:

21 for line in tmp_lines:

22 f.write(line) # update original file

After we execute the above script, we can run TOFU on (processed) dump.vcd to generate

a simulated trace. Specifically, we go to TOFU’s installation path, create a directory named

“traces” and copy the (processed) VCD file dump.vcd to this directory. Next, we go to this

directory and create/modify the TOFU setting file settings example.json as below:

1 # settings_example.json

2 {

3 "vcdGlob": "dump.vcd",

4 "pickleGlob": "dump.pickle",

5 "signalsFileNameLiterals": "signals_name.json",

6 "signalsFileName": "signals.json",

7 "signalPropertiesFile": "signal_properties.pickle",

8 "leakageModel": "HammingWeight",

9 "window": false ,

10 "windowFrom": null ,

11 "windowTo": null ,

12 "valueExtractFunction": "valueExtractIndex",

13 "writeTraces": true ,

14 "writeTracesBatchSize": 10,

15 "traceFileName": "dump.h5",

16 "align": false ,

17 "downsample": 1e5 ,

18 "format": "lascar"

19 }

In this particular example, we need to specify four parameters in the setting file. vcdGlob

(dump.vcd) is the name of the VCD file we use, pickleGlob (dump.pickle) is the name of

39

the pickle file that will be generated based on the given VCD file. leakageModel is the side-

channel leakage model we would like to choose (either HammingWeight or HammingDis-

tance). traceFileName (dump.h5) is the name of the output file, which saves the simulated

trace. We leave other parameters as default.

We then go back to TOFU’s installation path to run the following two Python scripts

from TOFU:

1 parse.py --settings ./ traces/settings_example.json

2 synthesize.py --settings ./ traces/settings_example.json

After running the two scripts, one simulated trace is saved in ./traces/dump.h5. A

visual example of a simulated trace in Hamming Distance (or Hamming Weight) can be

found in 17

(a) The trace using Hamming Weight (b) The trace using Hamming Distance

Fig. 17: Two simulated traces generated by TOFU respectively from the same dump.vcd

5.11 Step 8: Generate IP

At this point, we have successfully created a RTL level design for AES that can pass

the simulation at both C and RTL level given our testbench. The next step is to pack the

design into an FPGA IP, which will be loaded into Vivado later to generate a bitstream for

an FPGA (in our case, an Arty A7 FPGA board).

To make that happen, we will need to revisit our code to make some minor changes in

our main source file (test.cpp) and our HLS component configuration file (hls config.cfg),

and then rerun the C Synthesis without running the C/RTL simulation. This is because that

40

some code in our design is compatible with C/RTL simulation but is not compatible with

the generation of the IP/bitstream for FPGAs).

Special Note 1. We commented out the return port tied to ap ctrl none, i.e., line 7,

in function run test input in main source file test.cpp previously to avoid errors in C/RTL

simulation. Now, we need to enable this line again.

1 #pragma HLS INTERFACE mode=ap_ctrl_none port=return // line 7 in function

run_test_input in test.cpp

Special Note 2. In our current version of the top function (run test input) in our

main source file, we have the following

1 // current version for C Synthesis and C/RTL co-simulation

2 void run_test_input(ap_uint <8> *p, uint8_t ciphertext [16], uint8_t plaintext [16],

uint8_t key[16], uint8_t expected_ciphertext [16]) {

3

4 }

When we synthesize a top function into an FPGA IP, each argument of the top function

run test input is translated into an input/output port of the FPGA IP. Given arrays as

arguments, i.e., (ciphertext, plaintext, key, and expected ciphertext in our case, it is

complicated to work with when it comes to block design and generate the final bitstream. To

simplify the process, we decide to use a 128-bit variable to represent an array argument in

our current version. For instance, we use ap uint<128> plaintext 128 to replace uint8 t

plaintext[16] (ap uint<128> indicates a 128-bit unsigned integer). The updated version

of the declaration of the top function run test input is presented below as a reference.

1 // updated version for C Synthesis and IP Packaging

2 void run_test_input(ap_uint <8> *p, ap_uint <128> *ciphertext_128 , ap_uint <128>

plaintext_128 , ap_uint <128> key_128 , ap_uint <128> expected_ciphertext_128) {

3

4 }

While we can pass plaintext, key, expected ciphertext, ciphertext as input/output with

the way above, each one is still a single 128-bit integer, which still needs to be further sliced

into 16 bytes defined in uint8 t for operations within AES. Therefore, we write another

additional take input.h file to handle this transformation of a 128-bit integer ap uint<128>

to an array of 16 8-bit integers uint8 t (or visa versa for ciphertext 128). The logic of this

transformation is shown in 18. The details of this file can be found in our repository.

As a result, some code in the top function also need to be updated. Version 3 of our top

function, run test input, is presented below as a reference.

41

Fig. 18: Slicing a 128 bit integer into an array of 16 8- bit integers

1 // updated version of top function for running C Sythesis and IP Generation

without running C/RTL -Simulation

2 void run_test_input(ap_uint <8> *p, ap_uint <128> *ciphertext_128 , ap_uint <128>

plaintext_128 , ap_uint <128> key_128 , ap_uint <128> expected_ciphertext_128){

3

4 uint8_t key[16], uint8_t expected_output [16]){

5 #pragma HLS INTERFACE mode=ap_ovld port=plaintext_128

6 #pragma HLS INTERFACE mode=ap_ovld port=ciphertext_128

7 #pragma HLS INTERFACE mode=ap_ovld port=key_128

8 #pragma HLS INTERFACE mode=ap_ovld port=expected_ciphertext_128

9 #pragma HLS INTERFACE mode=ap_ovld port=p

10 #pragma HLS INTERFACE mode=ap_ctrl_none port=return

11

12 #pragma HLS array_partition variable=sbox type=complete

13 #pragma HLS array_partition variable=rsbox type=complete

14

15 uint8_t RoundKey[AES_keyExpSize];

16

17 uint8_t ciphertext [16];

18 uint8_t plaintext [16];

19 uint8_t expected_ciphertext [16];

20 uint8_t key [16];

21

22 take_input(plaintext_128 , plaintext);

23 take_input(key_128 , key);

24 take_input(expected_ciphertext_128 , expected_ciphertext);

25

26 test_encrypt_ecb(key , plaintext , ciphertext , RoundKey);

27

28 int pass = 0x50;

29

30 for (int i = 0; i < 16; i ++){

31 #pragma HLS pipeline off

32 if (ciphertext[i] != expected_ciphertext[i]){

33 pass = 0x10;

34 break;

35 }

36 }

37

42

38 ap_uint <128> ciphertext_temp = 0;

39

40 for (int i = 0; i < 16; i++){

41 #pragma HLS pipeline off

42 ap_uint <128> power_16 = 1;

43 for (int j = 0; j < (15 - i) * 2; j++){

44 #pragma HLS pipeline off

45 power_16 *= 16;

46 }

47 ciphertext_temp += power_16*ciphertext[i];

48 }

49

50

51 *p = pass;

52 *ciphertext_128 = ciphertext_temp;

53 }

In addition, we also need to add take input.h as an additional header file in our main

source file test.cpp and also include it as an additional source file in our configuration file

hls config.cfg of HLS component.

1 # updated version of hls_config.cfg

2 part=xc7a100tcsg324 -1

3

4 [hls]

5 syn.top=run_test_input

6 tb.file=key.txt

7 tb.file=plaintext.txt

8 tb.file=expected_ciphertext.txt

9 tb.file=testbench_simulation.cpp

10 cosim.trace_level=all

11 csim.code_analyzer =0

12 syn.interface.clock_enable =0

13 syn.file=aes.h

14 syn.file=aes_c.h

15 syn.file=take_input.h # added as a source file

16 syn.file=test.cpp

With all the updates above, we rerun C Synthesis by clicking “Run” under “C Synthesis”

to generate our design at the RTL level again. Then, we skip C/RTL-Co-simulation and we

execute “Run” under “Package” in Fig. 15. The output of a successful Package is listed below

for reference. The generated IP is included in a zip file (run test input.zip), which can be

found under <path to hls component>/<hls component name>. The detailed structure of

the zip file is shown in Fig. 19.

1 INFO: [IP_Flow 19 -234] Refreshing IP repositories

43

2 INFO: [IP_Flow 19 -1704] No user IP repositories specified

3 INFO: [IP_Flow 19 -2313] Loaded Vivado IP repository ’/tools/Xilinx/Vivado /2023.2/

data/ip’.

4 INFO: [Common 17 -206] Exiting Vivado at Mon Jan 20 12:29:07 2025...

5 INFO: [HLS 200 -802] Generated output file hls_component2/run_test_input.zip

6 INFO: [HLS 200 -111] Finished Command export_design CPU user time: 15.99 seconds.

CPU system time: 0.66 seconds. Elapsed time: 26.11 seconds; current allocated

memory: 6.840 MB.

7 INFO: [HLS 200 -1510] Running: close_project

8 INFO: [HLS 200 -112] Total CPU user time: 18.07 seconds. Total CPU system time:

0.92 seconds. Total elapsed time: 28.3 seconds; peak allocated memory: 281.336

MB.

9 INFO: [Common 17 -206] Exiting vitis_hls at Mon Jan 20 12:29:17 2025...

10 INFO: [vitis -run 60 -791] Total elapsed time: 0h 0m 32s

11 Package finished successfully

Fig. 19: Structure of the Generated IP

44

5.12 Step 9: Generate a Bitstream and Deploy the Bitstream on FPGA

Once we generate the IP successfully, we can move on to the next step. Specifically, we

will first need to start Vivado by following the commend below in the terminal. A successful

Vivado run can be found in 20

1 $ source /tools/ Xilinx/Vitis /2023.2/ settings64.sh

2 $ vivado # if one chooses to run Vivado

Fig. 20: Run Vivado from the terminal to launch Vivado GUI

Create a New Project in Vivado. After we launch Vivado, we create a new project

by selecting “Create Project” under “Quick Start” section on the welcome screen. Next, we

will need to provide the name of this project (we name it AES ECB 128 in our example) and

its location. We then need to specify the type of the project (“RTL project” in our case);

make sure the “Do not specify sources at this time” box is checked. Finally, we need to

specify the target board (Arty A7-100 in our case). This completes the step of creating the

new Vivado project. Figures of the above steps are presented from Fig. 21 to Fig. 25.

Add IP to Vivado Project. Next, we provide a top module name and add the our

IP generated from the last step to the Vivado project IP repository. Specifically, we go to

“Settings” under “PROJECT MANAGER” and navigate into “Repository” tab under “IP”

drop down menu. We then select “+” under “IP Repositories” and select the path to folder

run test input, which is extracted from run test input.zip obtained from the last step.

Figure of this action in presented in Fig. 26.

45

Fig. 21: Welcome Screen of Vivado

Fig. 22: Start of instruction guide

46

Fig. 23: Provide a project name and location

Fig. 24: Specify project type

47

Fig. 25: Specify target board part (choose xc7a100tcsg324-1)

Fig. 26: Adding our generated IP to Vivado project’s IP repository

48

Next, we will discuss how to create a block design and synthesize it into a FPGA bit-

stream. We will also show how to integrate hardware verification component into our design

as well.

Create Block Design. First step is to create a new block design for our project. Specif-

ically, we select “Create Block Design” under “IP INTEGRATOR”. We then provide the

name (design 1 in our example), location, and source files of the design, which we left as

default for now. Fig. 27 shows the default configurations for a new block design.

Fig. 27: Create a new block design for AES ECB 128 in Vivado

Next, we select the “+” button in “Diagram” window, search for “Run test input” and

press “Enter” to add run test input IP into our block design (design 1). Fig. 28 and Fig.

29 show the process of adding IP component to design 1 and the appearance of design 1

after run test input IP has been added.

Next, we select “Run Connection Automation” on the green ribbon located at the top of

“Diagram” window. A window, presented in Fig. 30, shows the options that the automation

tool will follow to create support blocks and wires for our design. We can leave everything

as default for now. After we click “OK”, the appearance of design 1 at this point can be

found in Fig. 31.

As shown in Fig. 31, Vivado still suggests “Run Connection Automation”, indicating some

components and/or connections are needed for design 1 to be a valid design. Therefore, we

run “Run Connection Automation” again for the second time. This time we check all

49

Fig. 28: Add run test input IP to design 1 block design

Fig. 29: Appearance of design 1 after run test input IP has been added

50

the boxes (e.g., clk wiz and rst clk wiz 100M as shown in Fig. 32). The appearance of

design 1 at this point can be found in Fig. 33.

Fig. 30: Run Connection Automation the first time

Fig. 31: design 1 block design after running “Run Connection Automation” the first time

Next, we create additional components to supply plaintext, key, and expected ciphertext

into run test input IP. To do this, we can add one Constant IP component into design 1

for plaintext, key, and expected ciphertext, respectively. Specifically, we navigate to “+” in

“Design” window, search for “Constant” and press “Enter”; one Constant IP, which can be

found in Fig. 34, will then be added to design 1 block design. We configure this Constant

IP to be 128 bit in size to hold the value of our plaintext. To do this, we double click onto

51

Fig. 32: Run Connection Automation the second time

Fig. 33: design 1 block design after running ”Run Connection Automation” the second time

52

the Constant IP component; a “Re-customize IP” window will then be launched as shown in

Fig. 35. We change “Const Width” into 128 and “Const Val” into the input value (we provide

0x6bc1bee22e409f96e93d7e117393172a to “Const Val” as the plaintext, which was used

in our C simulation and C/RTL simulation). An example Constant IP block for plaintext

input after being configured is presented in Fig. 34 and Fig. 35 as a reference. Similarly, we

add one Constant IP block for key (0x2b7e151628aed2a6abf7158809cf4f3c) and one for

expected ciphertext (0x3ad77bb40d7a3660a89ecaf32466ef97).

(a) Original Constant IP block (b) Configured Constant IP block

Fig. 34: Appearance of Constant IP block

Fig. 35: Detail configuration of Constant IP block for plaintext input

Next step is to connect the three Constant IP blocks to run test input. Specifically,

we click on the pin of each Constant IP block and drag it over to the corresponding input

pin on run test input IP block. The final complete appearance of design 1 block design

53

is presented in Fig. 36. After this action, we have successfully created a block design, which

can be synthesized into a bitstream and run on FPGA.

Fig. 36: Final complete appearance of design 1 block design

Add Hardware Verification Component (Recommended but Optional). Vivado

provides Integrated Logic Analyzer (ILA) IP block, which is able to capture signal for a

given port during the run time on FPGA. With this, we can show whether the synthesized

bitstream runs correctly on a FPGA board. Note that this step is optional but recommended

for design verification.

To add ILA to our block design, we select “+” in “Diagram” window, search for “ILA”,

and press “Enter”. An ILA IP block with default configuration, as shown in Fig. 37, is then

added to our block design. The default configuration for ILA block is presented in Fig. 38

as a reference.

Fig. 37: Integrated Logic Analyzer (ILA) IP block

54

Fig. 38: Integrated Logic Analyzer (ILA)’s default configuration

We need to reconfigure ILA block to support our purpose. Specifically, as shown in Fig. 38,

in “General Options” tab, we change “Monitor Type” into “Native”, then set “Number of

Probes” to 2. Then, in the “Probe Ports” tab, we change “Probe Width” for “PROBE0”

and “PROBE1” to be 8 and 128 respectively. The final configuration and appearance of

configured ILA block is presented in Fig. 39 and Fig. 40 respectively.

(a) ILA’s General Options configuration (b) ILA’s Probe Ports configuration

Fig. 39: ILA’s configuration

55

Fig. 40: Appearance of configured ILA block

Next, we wire ila 0’s clk pin to clk wiz’s clk out1 pin. We then wire ila 0’s probe0

and probe1 pin to run test input’s p and ciphertext 128 pin respectively. The final block

design with ILA can be found in Fig. 41

Fig. 41: Final block design with ILA integrated

As a preparation for generating bitstream, we need to create a HDL Wrapper for our

block design. To do this, we right click on “design 1 (design 1.bd)” under “Simulation

Sources/sim 1” in “Sources” window Fig. 42 and select “Create HDL Wrapper”; make sure

“Let Vivado manage wrapper and auto-update” option is selected. The final HDL wrapper

can be found in Fig. 43. Accordingly, we need to update “Settings/General/Top module

name” to design 1 wrapper as seen in Fig. 44.

Synthesize the Block Design into a FPGA bitstream. To generate a bitstream for

FPGA, we run “Synthesis”, “Implementation”, and “Generate Bitstream”. Specifically, in

56

Fig. 42: Block design sources tab

Fig. 43: Block design with HDL wrapper

Fig. 44: Block design top module name updated to design 1 wrapper

57

“Flow Navigator” tab, we click on “Run Synthesis” under “SYNTHESIS” tab, then proceed

to select “Run Implementation” under “IMPLEMENTATION” tab, and finally proceed to

run “Generate Bitstream” under “PROGRAM AND DEBUG”. A successful run of each step

is indicated by the green tick symbol next to “design 1”, “synth 1”, and “impl 1” in “Design

Runs” window as shown in Fig. 45

Fig. 45: Successful run as shown in ”Design Runs” window

After running “Implementation”, we need to update I/O ports configuration. Specifi-

cally, we navigate to “Window” tab and select “I/O Ports”; an example of default I/O ports

configuration is presented below as a reference. We make sure the “I/O Std” field is LVC-

MOS33 (3.3V) according to the details of our FPGA board 5. In addition, we update the

RST.RESET 0 54576 port as fixed. The updated I/O ports configuration can be found in

Fig. 47. We then press “Ctrl + S” on “I/O Ports” tab to save I/O ports configuration as a

constraint file for our design.

After updating the I/O Ports, we re-run “Synthesis”, “Implementation”, and “Generate

Bitstreams”. The final schemetic post-synthesis is shown in Fig. 48 and the device layout

post-implementation of our design is presented in Fig. 49. A successful “Generate Bitstream”

run can be found in 50

At this point, we have successfully generated a bitstream from our design for Digilient

Arty A7-100t FPGA board. We can locate it at <path to Vivado project>/<project

name>.runs/<top module name>.bit. Next step is to upload the bitstream to the FPGA.

5 https://github.com/Digilent/digilent-xdc/blob/master/Arty-A7-100-Master.xdc

https://github.com/Digilent/digilent-xdc/blob/master/Arty-A7-100-Master.xdc

58

Fig. 46: Block design default I/O ports configuration

Fig. 47: Block design final I/O ports configuration

Deploy a Bitstream on FPGA. To deploy the bitstream (<top module name>.bit)

obtained from above step on Digilient Arty A7-100t FPGA board, we first need to connect

the board to our machine and select “Open Hardware Manager” under ”PROGRAM AND

DEBUG” to open Vivado’s hardware manager as shown in Fig. 51.

Next step is to click on “Open target” then “Auto connect” to connect the target FPGA

board to Vivado’s hardware manager. Once the board is connected, we need to click on

“Program device” to program the board with the bitstream obtained previously.

If we add the ILA component in the bitstream and would like to capture signal from the

board when hardware is running, we can click on the “Play” symbol; then any signal captured

by ILA is displayed on the screen, which in our case is p (pass flag) and ciphertext 128

(output ciphertext). A successful run is presented below as a reference.

If one can reach this point, it means that they have successfully generated a working

bitstream running AES ECB for Digilient Arty A7-100t FPGA board!

5.13 Step 10: Obtain the Final Design

At this point, we have successfully translated an AES ECB 128 software implementation

(based on TinyAES [6]) into a hardware version using Vitis HLS and Vivado for Digilient Arty

A7-100t FPGA board. As discussed above, the design is proved to operate successfully and

produce correct ciphertext when running on physical FPGA board. While this is successful,

the current hardware design contains many verification components, which are not needed

59

Fig. 48: Block design I/O ports configuration

Fig. 49: Block design device layout

60

Fig. 50: An Example of Successful “Generate Bitstream” Run

Fig. 51: Vivado’s hardware manager

61

Fig. 52: On-device verification result, which shows the encryption runs correctly.

Table 1: Results of the prototype and utilization of the current hardware de-
sign (with ILA and verification component, referred as verifiable design) on Dig-
ilient Arty A7-100t (xc7a100tcsg324-1) and Spartan-7 SP701 Evaluation Platform
(xc7s100fgga676-2)Boyang says: Phuc: please update the table

Verifiable Design (Arty A7) Verifiable Design (Spartan-7)
Power (W) 0.243 ??
LUTs (util.) 2354 (14.85%) ??
Flip-flops (util.) 3552 (2.80%) ??
BRAM Blocks (util.) 7.5 (3.33%) ??
DSP slices (util.) 8 (3.33%) ??
Frequency (MHz) 100 ??
Latency (µs) 25.66 ??

for the final design. Ideally, the final design should take one key and one plaintext as input,

and output a ciphertext. To obtain the final design, we will need to remove all the verification

components in our current design (e.g., ILA block, p flag, expected ciphertext, and the

comparison mechanism between calculated ciphertext and expected ciphertext)6.

Update Top Function for Final Design. First, we will need to go back to our HLS

component in Vitis and make changes in our top function run test input. Specifically, in

the top function run test input, we remove argument expected ciphertext and p and

their corresponding port configuration (line 7 and 8 respectively). The updated version of

run test input’s function definition and port configurations can be found below

6 Although obtaining the final design (without verification components) directly is feasible, we highly recommend
to obtain the version with verification components first to ensure the correctness of the design as what we did in
this tutorial.

62

1 // updated version of top function in test.cpp for the final design

2

3 void run_test_input(ap_uint <128> *ciphertext_128 , ap_uint <128> plaintext_128 ,

ap_uint <128> key_128){

4 #pragma HLS INTERFACE mode=ap_ovld port=plaintext_128

5 #pragma HLS INTERFACE mode=ap_ovld port=ciphertext_128

6 #pragma HLS INTERFACE mode=ap_ovld port=key_128

7 #pragma HLS INTERFACE mode=ap_ctrl_none port=return

8

9 #pragma HLS array_partition variable=sbox type=complete

10 #pragma HLS array_partition variable=rsbox type=complete

11

12 }

In addition, we remove the ciphertext result verification component of the program, which

is associated with line 27, line 29 to 35, and line 50 in run test input function. We highlight

these lines below as a reference.

1 // updated version of top function in test.cpp for the final design

2 // remove line 27 below

3 // int pass = 0x50;

4

5 // remove line 29 to 35 below

6 // for (int i = 0; i < 16; i ++){

7 // #pragma HLS pipeline off

8 // if (ciphertext[i] != expected_ciphertext[i]){

9 // pass = 0x10;

10 // break;

11 // }

12 // }

13

14 // remove line 50 below

15 //*p = pass;

16

The updated version of run test input for the final design can be found below

1 // updated version of top function in test.cpp for the final design

2 void run_test_input(ap_uint <128> *ciphertext_128 , ap_uint <128> plaintext_128 ,

ap_uint <128> key_128){

3

4 uint8_t key[16], uint8_t expected_output [16]){

5 #pragma HLS INTERFACE mode=ap_ovld port=plaintext_128

6 #pragma HLS INTERFACE mode=ap_ovld port=ciphertext_128

7 #pragma HLS INTERFACE mode=ap_ovld port=key_128

8 #pragma HLS INTERFACE mode=ap_ctrl_none port=return

9

63

10 #pragma HLS array_partition variable=sbox type=complete

11 #pragma HLS array_partition variable=rsbox type=complete

12

13 uint8_t RoundKey[AES_keyExpSize];

14

15 uint8_t ciphertext [16];

16 uint8_t plaintext [16];

17 uint8_t expected_ciphertext [16];

18 uint8_t key [16];

19

20 take_input(plaintext_128 , plaintext);

21 take_input(key_128 , key);

22 take_input(expected_ciphertext_128 , expected_ciphertext);

23

24 test_encrypt_ecb(key , plaintext , ciphertext , RoundKey);

25

26 ap_uint <128> ciphertext_temp = 0;

27

28 for (int i = 0; i < 16; i++){

29 #pragma HLS pipeline off

30 ap_uint <128> power_16 = 1;

31 for (int j = 0; j < (15 - i) * 2; j++){

32 #pragma HLS pipeline off

33 power_16 *= 16;

34 }

35 ciphertext_temp += power_16*ciphertext[i];

36 }

37

38 *ciphertext_128 = ciphertext_temp;

39 }

Obtain the Updated IP. With the updated version of the top function, we go through

the same process as in Step 6 and Step 8 (Step 7 can be skipped for the final design) to

obtain the updated IP. Specifically, we run “C Synthesis” and “Package” in Vitis HLS.

Obtain the Updated Block Design. Once we obtain the updated IP, we follow the

guidelines as detailed in Step 9 to create an updated block design in Vivado, run synthesis

and implementation, and then generate the bitstream. Specifically, instead of adding the

ILA component (for verification) and Constant block (for supplying plaintext) as we did

before, we expose the corresponding ports (plaintext 128, key 128, and ciphertext 128)

such that I/O ports can be used to pass inputs to the design and record outputs from the

design. To do this, we right click on the target port pin, for example plaintext 128, and

64

Fig. 53: Exposing port plaintext 128

Fig. 54: Block design of final design

select make external. Fig. 53 shows the result of this operation. We apply the same method

to key 128 and ciphertext 128. Fig. 54 shows the updated block design in Vivado.

It’s worth mentioning that exposed ports are actually mapped into I/O ports of the

board. As one I/O port can only carry 1 bit (0 or 1), it requires 128 I/O ports to handle

each of plaintext 128, ciphertext 128 and key 128 respectively, making the total of 384

I/O ports required for the final design, which exceeds the number of I/O ports available on

Digilient Arty A7-100t FPGA board. In order to streamline further analysis on the model, we

switch the target board to Spartan-7 SP701 Evaluation Platform (xc7s100fgga676-2). The

measurement and data we present from this point is based on Spartan-7 SP701 Evaluation

Platform. The Netlist schematice and device layout of the final design can be found in 55,

56, and 57. Table 2 shows the utilization of final design.

65

Fig. 55: Zoomed in the netlist schematic (final design)

Fig. 56: Design device layout (final design)

66

Fig. 57: Overall netlist schematic (Final design)

67

Table 2: Results of the prototype and utilization of the verifiable design and final design on
Spartan-7 SP701 Evaluation Platform (xc7s100fgga676-2)

Verifiable Design Final Design
Power (W) ?? 0.319
LUTs (util.) ?? 975 (1.52%)
Flip-flops (util.) ?? 1180 (0.92%)
BRAM Blocks (util.) ?? 3(2.50%)
DSP slices (util.) ?? 8 (5%)
Frequency (MHz) ?? 100
Latency (µs) ?? 21.93

5.14 Step 11: Generate a Simulated Trace of Final Design in Vivado

Given the final design, our next step is to obtain simulated traces of this design for

side-channel analysis. Specifically, we run the simulation in Vivado with the final design by

providing an additional testbench. This testbench passes a key and a plaintext as input to

the final design, and the final design outputs the ciphertext. This is another way to obtain

simulated traces in addition to the ones mentioned through C/RTL co-simulation.

For ease of presentation, we first provide more detailed information regarding our block

design. The block design we have in Vivado (design 1) is wrapped inside a Verilog file

(design 1 wrapper.v). design 1 wrapper.v contains calls to the control module of the

block design (design 1.v). design 1.v then calls main modules of the program to run AES

encryption. The hierarchy can be found in 58

(a) HDL wrapper for our block design (b) Main control module for our block design

Fig. 58: HDL-wrapped Vivado block design hierarchy

68

The content of design 1 wrapper is presented below as a reference.

1 ‘timescale 1 ps / 1 ps

2

3 module design_1_wrapper

4 (ciphertext_128_0 ,

5 ciphertext_128_ap_vld_0 ,

6 clk_100MHz ,

7 key_128_0 ,

8 plaintext_128_0 ,

9 reset);

10 output [127:0] ciphertext_128_0;

11 output ciphertext_128_ap_vld_0;

12 input clk_100MHz;

13 input [127:0] key_128_0;

14 input [127:0] plaintext_128_0;

15 input reset;

16

17 wire [127:0] ciphertext_128_0;

18 wire ciphertext_128_ap_vld_0;

19 wire clk_100MHz;

20 wire [127:0] key_128_0;

21 wire [127:0] plaintext_128_0;

22 wire reset;

23

24 design_1 design_1_i

25 (. ciphertext_128_0(ciphertext_128_0),

26 .ciphertext_128_ap_vld_0(ciphertext_128_ap_vld_0),

27 .clk_100MHz(clk_100MHz),

28 .key_128_0(key_128_0),

29 .plaintext_128_0(plaintext_128_0),

30 .reset(reset));

31

32 endmodule

We create a testbench (testbench.v), which contains a design 1 wrapper module ini-

tiation, clock generation, and a stimuli (to update signals to reflect on design 1 wrapper

module). This testbench provides a key and a plaintext, and also specific the name of the

VCD file that will be generated from the simulation. The code of the testbench we used is

listed below

1 ‘timescale 1ns/1ps

2

3 module main_tb ();

4 reg ap_clk;

5 reg ap_rst;

6 wire [127:0] ciphertext_128;

69

7 wire ciphertext_128_ap_vld;

8 reg [127:0] plaintext_128;

9 reg [127:0] key_128;

10

11 design_1_wrapper dut(

12 .clk_100MHz(ap_clk),

13 .reset(ap_rst),

14 .ciphertext_128_0(ciphertext_128),

15 .ciphertext_128_ap_vld_0(ciphertext_128_ap_vld),

16 .plaintext_128_0(plaintext_128),

17 .key_128_0(key_128)

18);

19

20 always #5 ap_clk = ~ap_clk;

21 initial begin

22 ap_clk = 0;

23 ap_rst = 1;

24 plaintext_128 = 128’h0;

25 key_128 = 128’h0;

26 #20

27 ap_rst = 0;

28 #10

29 plaintext_128 = 128’ h6bc1bee22e409f96e93d7e117393172a;

30 key_128 = 128’ h2b7e151628aed2a6abf7158809cf4f3c;

31 wait(ciphertext_128_ap_vld);

32 #50 $finish;

33 end

34

35 initial begin

$dumpfile("/home/mdphuc/UCDASEC/AES_final_design/aes_trace_behavioral.vcd")

;

36 $dumpvars(0, dut); // dump all signals inside the program

37 end

38

39 initial begin

40 $monitor("Time␣=␣%0t,␣ciphertext␣=␣%h", $time , ciphertext_128);

41 end

42 endmodule

Usage. To run the simulation inside Vivado, first, we need to add our testbench program

to the “Simulation Sources”. To do this, we can navigate to “Simulation Sources” under

“Sources” window, right click on “sim 1” and select “add simulation file” to add our testbench

file to the Vivado project. The final look of ”Sources” window can be found in 59

To run simulation, we can click on “Run Simulation” under “Simulation” tab in “Project

Manager” section. The supported options for simulation are referenced in 60. We primarily

70

Fig. 59: “Sources” window after testbench file main tb.v has been added

run Behavioral Simulation in this tutorial. Other simulations, such as Post-Synthesis and

Post-Implementation, can also be performed with longer simulation time.

Fig. 60: Supported simulation options

It is worth mentioning that the default simulation time in Vivado is 1000ns. If one would

like to run Post-implementation timing simulation, it is recommended to update the simula-

tion time to 25000s. This can be done inside Vivado by navigate to ”Settings” under ”Project

Manager”, then go to ”Simulation” tab under ”Project Settings”, and click on ”Simulation”

in the same tab. We then need to change xsim.simulate.runtime to be 25000ns. Fig. 61

visualizes this process as a reference.

The simulation’s waveform result can be found in 62, which is the same across behavioral

simulation, post-synthesis simulation, and post-implementation simulation.

71

Fig. 61: Simulation time setting

Fig. 62: Simulation’s waveform result for final design

72

Once a VCD file is generated from the simulation, we will follow the same process as

mentioned in Sec. 5.10 to parse it with TOFU and obtain a simulated trace. Fig. 63 shows

example traces generated by TOFU from obtained VCD files for different stages of simu-

lation: behvioral, post synthesis funcation and timing simulation, and post implementation

functional and timing simulation.

Fig. 63: Simulated traces (Hamming Weight in TOFU) across different levels of simulation
in Vivado

5.15 Step 12: Establish A Dataset of Simulated Traces

Once we are able to generate a simulated trace from one VCD file, the next step is to

generate multiple simulated traces automatically in a large scale given different plaintexts.

Then we can merge these traces, plaintexts and the key into a single dataset saved in npz

format for the downstream pre-silicon side-channel analysis.

Boyang says: Phuc: you can provide the details regarding how to generate multiple VCD

files and traces automatically, and how to merge them into a single npz file

73

The process of generating multiple traces can be performed cleverly by leveraging Vi-

vado’s tcl scripting. In general, one can execute a tcl file in Vivado by running the following

command:

1 vivado -mode tcl -source "<path␣to␣tcl␣file >"

In this document, we will not discuss in detail how to write a tcl file for Vivado, but

rather we only go over the tcl file (launch simulation.tcl) we will use to generate multiple

simulated traces, which is presented below as a reference; one is highly encouraged to check

Xilinx/AMD Technical Information Portal for more information about Vivado tcl commands
7.

1 # launch_simulation.tcl

2

3 open_project /home/mdphuc/UCDASEC/AES_Implementation/AESHardware/SMAesH -1.1.0/

SMAesH_Vivado/SMAesH_Vivado.xpr

4 launch_simulation

5 set plaintexts "/home/mdphuc/UCDASEC/AES_Implementation/AESHardware/SMAesH

-1.1.0/50000 _plaintexts.txt"

6 set config_file "/home/mdphuc/UCDASEC/AES_Implementation/AESHardware/SMAesH -1.1.0/

config.txt"

7

8 set fh [open $plaintexts r]

9 set plaintexts [split [read $fh] "\n"]

10 close $fh

11

12 set iteration 1

13

14 # restart

15 # run all

16 # Loop over each plaintext

17

18 foreach plaintext $plaintexts {

19 if {$iteration <= 5000} {

20 set cfg_fh [open $config_file w]

21 puts $cfg_fh [format "%s,%d" $plaintext $iteration]

22 close $cfg_fh

23

24 restart

25 run all

26

27 puts "Iteration␣$iteration"

28 }

29 incr iteration

30 }

7 https://docs.amd.com/r/en-US/ug835-vivado-tcl-commands/Introduction

https://docs.amd.com/r/en-US/ug835-vivado-tcl-commands/Introduction

74

31 exit

launch simulation.tcl first runs open project, which takes an absolute path to the

Vivado project .xpr file, to open the Vivado project we created for the final design in previous

steps. Next, it runs launch simulation to put the design into simulation mode at RTL

behavioral level. It’s worth mentioning that, if one wants to run simulation at other levels,

for example post synthesis functional or timing, they can simply replace launch simulation

with the corresponding line in the following code block:

1 launch_simulation -mode post-synthesis -type functional # functional simulation at

post synthesis level

2 launch_simulation -mode post-synthesis -type timing # timing simulation at post

synthesis level

3 launch_simulation -mode post-implementation -type functional # functional

simulation at post synthesis level

4 launch_simulation -mode post-implementation -type functional # timing simulation

at post synthesis level

Next, launch simulation.tcl read from plaintext file (50000 plaintexts.txt, a file

that contains 50000 128 bits plaintext we use in the experiment; any plaintext file is ac-

ceptable here, but one is advised to keep each plaintext on its own line) and store its data

in variable plaintexts. Next, launch simulation.tcl starts a for loop, which iterates

over every plaintext, write that plaintext and its corresponding index into the config file

(config.txt), and finally restart the simulation. Once simulation has been restarted, a new

set of plaintext is read from config file, and a new trace will be generated for our dataset.

The version of launch simulation.tcl we are showing here is capable of generating

5000 simulated traces based on plaintext number 1 to 5000 in 50000 plaintexts.txt. If

one wants to generate a larger number of traces, they can replace number 5000 in line 19

with any desire number. For example, if one wants to target 10000 traces, they can modify

line 19 as followed:

1 # Line 19 of launch_simulation.tcl

2 if ($iteration <= 10000) {

As discussed above, new plaintext and its corresponding index are written into config.txt;

with this set up, we may need to update testbench.v such that it’s able to read from

config.txt to update the value of input plaintext and also set the name for output vcd

file. To achieve this, we make use of Vivado’s task; essentially, task is similar to a function

with no return and can be called at any time. We create a task named loadConfig, which

is presented below as a reference, and place loadConfig() in the stimulis.

1 task loadConfig;

75

2 begin

3 fileHandler = $fopen("/home/mdphuc/UCDASEC/AES_final_design/config.txt

","r");

4 if (fileHandler) begin

5 $fscanf(fileHandler , "%x,%d", plaintext_128 , plaintextNum);

6 $fclose(fileHandler);

7 end

8 // if (seedHandler) begin

9 // $fscanf(seedHandler , "%x", seed);

10 // $fclose(seedHandler);

11 // end

12 $sformat(vcdFilename , "/home/mdphuc/UCDASEC/AES_final_design/

TRACE_EXAMINATION/plaintext%d.vcd", plaintextNum);

13 $display(vcdFilename);

14 $dumpfile(vcdFilename);

15 $dumpvars(0, dut);

16 $display("Dumping␣to:␣%s", vcdFilename);

17 end

18 endtask

Once launch simulation.tcl has finished, 5000 simulated traces can be found under

path stored in vcdFilename, which in our case, it is /home/mdphuc/UCDASEC/AES final design/

TRACE EXAMINATION/.

At this point, the process is the same as one used when generating one single trace.

Specifically, we need to remove any empty line and replace integer with reg in each of the

vcd files. Then we follow TOFU pipeline to generate h5 trace for each vcd file. This process

can easily be automated using a simple Python script.

Once we have all the h5 trace in place, we can go ahead and pack them into a .npz

dataset. The dataset contains 3 parts:

1. ”plain text”: list of all plaintext

2. ”power trace”: list of all h5 trace

3. ”key”: key used in encryption in the form of array of 16 bytes

It’s worth mentioning that the order of ”plain text” should be aligned with the order

of ”power trace”, meaning at the same index i, power trace[i] should be the trace got from

running the design with plain text[i]. To ease the process, we propose a Python program

(pack trace.py) for automation, which is presented below as a reference:

1 import os

2 import json

3 import argparse

4 import sys

5 import h5py

76

6 import numpy as np

7

8 def parseArgs(argv):

9 parser = argparse.ArgumentParser ()

10 parser.add_argument(’-i’, ’--input_dir ’, help=’Input␣vcd␣trace␣dir’)

11 parser.add_argument(’-t’, ’--trace ’, help="Trace␣(num␣start)_(num␣end)")

12 parser.add_argument(’-p’, ’--plaintext ’, help="Plaintext␣file")

13 parser.add_argument("-o", "--output", help="Output")

14 opts = parser.parse_args ()

15 return opts

16

17 def hex_str_to_array(input):

18 hex_array = []

19

20 for i in range(0, len(input), 2):

21 hex_array.append (16 * int(input[i], 16) + int(input[i+1], 16))

22

23 return hex_array

24

25 def hex_array_to_hex_str(input_arr):

26 hex_str = ""

27 for i in range(len(input_arr)):

28 if len(str(hex(input_arr[i]))[2:]) == 1:

29 hex_str += "0" + str(hex(input_arr[i]))[2:]

30 else:

31 hex_str += str(hex(input_arr[i]))[2:]

32

33 return hex_str

34

35 if __name__ == "__main__":

36 opts = parseArgs(sys.argv)

37

38 power_traces = []

39 plain_texts = []

40 key_str = "2b7e151628aed2a6abf7158809cf4f3c"

41

42 key = hex_str_to_array(key_str)

43

44 trace_start_index = int(opts.trace.split("_")[0])

45 trace_end_index = int(opts.trace.split("_")[1])

46

47 vcd_traces = os.listdir(opts.input_dir)

48

49 vcd_traces_core = []

50

51 for vcd_trace in vcd_traces:

52 if "plaintext" in vcd_trace:

77

53 vcd_traces_core.append(vcd_trace)

54

55 vcd_traces = vcd_traces_core

56

57 tmp = sorted(vcd_traces , key=lambda x: int(x.split(".")[0][9:]))

58

59 vcd_traces = tmp

60

61

62 with open("{0}".format(opts.plaintext), "r") as f:

63 plaintexts = f.readlines ()

64

65 size_trace = []

66

67 for i, vcd_trace in enumerate(vcd_traces):

68 if "plaintext" in vcd_trace and "h5" in vcd_trace:

69 index = int(vcd_trace [9:]. split(".")[0])

70

71 if index >= trace_start_index and index <= trace_end_index - 1:

72 with h5py.File(’{0}/ plaintext {1}.h5’.format(opts.input_dir , index)

, ’r’) as file:

73 dataset = file[’/leakages ’]

74 data = dataset[:, :]

75

76 data = data.reshape (-1)

77

78 size_trace.append(len(data))

79

80 for i, vcd_trace in enumerate(vcd_traces):

81 if "plaintext" in vcd_trace and "h5" in vcd_trace:

82 index = int(vcd_trace [9:]. split(".")[0])

83

84 if index >= trace_start_index and index <= trace_end_index - 1:

85 with h5py.File(’{0}/ plaintext {1}.h5’.format(opts.input_dir , index)

, ’r’) as file:

86 dataset = file[’/leakages ’]

87 data = dataset[:, :]

88

89 data = data.reshape (-1)

90

91 power_traces.append(data[:min(size_trace)])

92 plain_texts.append(hex_str_to_array(plaintexts[index - 1]. split("\

n")[0]))

93

94 print("Done␣{0}/{1}".format(i + 1, trace_end_index -

trace_start_index), hex_array_to_hex_str(plain_texts[i]))

95

78

96 np.savez("{0}".format(opts.output), plain_text = plain_texts , power_trace =

power_traces , key = key)

Once pack trace.py has finished, a npz dataset can be found under opts.output.

References

1. AMD/Xilinx. AMD Design Suite. https://www.amd.com/en/products/software/adaptive-socs-and-fpgas/

vivado.html, 2013.

2. Cadence. Stratus High-Level Synthesis. https://www.cadence.com/en_US/home/tools/

digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html, 2015.

3. CENSUS. Masked AES. https://github.com/CENSUS/masked-aes-c, 2020.

4. Fabrizio Ferrandi, Vito Giovanni Castellana, Serena Curzel, Pietro Fezzardi, Michele Fiorito, Marco Lattuada,

Marco Minutoli, Christian Pilato, and Antonino Tumeo. Invited: Bambu: an open-source research framework for

the high-level synthesis of complex applications, Dec 2021.

5. Hao Zheng, University of South Florida. High-Level Synthesis, Creating Custom Circuits from High-Level Code.

https://cse.usf.edu/~haozheng/teach/cda4253/slides/hls-intro.pdf.

6. kokke. TinyAES: Small portable AES128/192/256 in C. https://github.com/kokke/tiny-AES-c, 2019.

7. Lab-STICC, Université de Bretagne-Sud. GAUT - A Free and Open-Source High-Level Synthesis tool. https:

//wiki.f-si.org/index.php/GAUT_-_A_Free_and_Open-Source_High-Level_Synthesis_tool, 2010.

8. Siemens. Catapult High-Level Synthesis and Verification. https://eda.sw.siemens.com/en-US/ic/

catapult-high-level-synthesis/, 2004.

9. tueisec. TOFU - Toggle Count Analysis made simple. https://gitlab.lrz.de/tueisec/tofu, 2022.

https://www.amd.com/en/products/software/adaptive-socs-and-fpgas/vivado.html
https://www.amd.com/en/products/software/adaptive-socs-and-fpgas/vivado.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://github.com/CENSUS/masked-aes-c
https://cse.usf.edu/~haozheng/teach/cda4253/slides/hls-intro.pdf
https://github.com/kokke/tiny-AES-c
https://wiki.f-si.org/index.php/GAUT_-_A_Free_and_Open-Source_High-Level_Synthesis_tool
https://wiki.f-si.org/index.php/GAUT_-_A_Free_and_Open-Source_High-Level_Synthesis_tool
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/
https://gitlab.lrz.de/tueisec/tofu

	Tutorial: Implementing Unmasked AES with High Level Synthesis using Xilinx Vitis HLS

